
Distributed Music Classification Using
Random Vector Functional-Link Nets

Simone Scardapane, Roberto Fierimonte, Dianhui Wang,
Massimo Panella and Aurelio Uncini

Abstract— In this paper, we investigate the problem of music
classification when training data is distributed throughout a
network of interconnected agents (e.g. computers, or mobile
devices), and it is available in a sequential stream. Under the
considered setting, the task is for all the nodes, after receiving
any new chunk of training data, to agree on a single classifier
in a decentralized fashion, without reliance on a master node.
In particular, in this paper we propose a fully decentralized,
sequential learning algorithm for a class of neural networks
known as Random Vector Functional-Link nets. The proposed
algorithm does not require the presence of a single coordinating
agent, and it is formulated exclusively in term of local exchanges
between neighboring nodes, thus making it useful in a wide
range of realistic situations. Experimental simulations on four
music classification benchmarks show that the algorithm has
comparable performance with respect to a centralized solution,
where a single agent collects all the local data from every node
and subsequently updates the model.

I. INTRODUCTION

Music classification is the task of automatically assigning a
song to one (or more) classes, depending on its audio content
[1]. It is a fundamental task in many music information
retrieval (MIR) systems, whose broader scope is to efficiently
retrieve songs from a vast database depending on the user’s
requirements [2]. Examples of labels that can be assigned
to a song include its musical genre [3], [4], artist [5],
induced mood [2] and leading instrument [6]. Classically, the
interest in music classification is two-fold. First, being able
to correctly assess the aforementioned characteristics can
increase the efficiency of a generic MIR system (see survey
[2] and references therein). Secondly, due to its properties,
music classification can be considered as a fundamental
benchmark for supervised learning algorithms [1]: apart from
the intrinsic partial subjectivity of assigning labels, datasets
tend to be relatively large, and a wide variety of features can
be used to describe each song. These features can also be
supplemented by meta-informations and social tags [7].

In multiple real world applications, a third characteristic
of musical data concerns its distributed nature (e.g., songs
distributed over multiple computers on a network) [8]. To
this end, in this paper we consider the problem of music
classification under the additional constraint that training

Simone Scardapane, Roberto Fierimonte, Massimo Panella and Aurelio
Uncini are with the Department of Information Engineering, Electronics
and Telecommunications (DIET), “Sapienza” University of Rome, Via
Eudossiana 18, 00184 Rome, Italy. Emails: {simone.scardapane, mas-
simo.panella, aurelio.uncini}@uniroma1.it, roberto.fierimonte@gmail.com.
Dianhui Wang is with the Department of Computer Science and Computer
Engineering, La Trobe University, Melbourne, VIC 3086, Australia. Email:
dh.wang@latrobe.edu.au.

data (i.e. songs) is distributed throughout a network of
interconnected nodes. By exploiting their local datasets, and
limited communication with their neighbors, nodes must
agree on a single classifier, whose generalization capability
should approximate sufficiently well that of a centralized
model built by first collecting all the local datasets. For
generality, no node in the network is allowed to coordinate
the training process. Additionally, nodes can communicate
only with their direct neighbors, but they are not permitted to
exchange their data points. Finally, in this paper a sequential
setting is considered, where new training data is arriving
continuously in a streaming fashion. This is a highly general
setting [9], which subsumes many possible applications,
including decentralized music classification on peer-to-peer
(P2P) systems [10], and over wireless sensor networks [8].

In particular, we propose a sequential, fully distributed
learning algorithm for a class of neural network models
known as Random Vector Functional-Link (RVFL) nets,
also known as Random-Weights Neural Networks (RWNN)
[9], [11], [12]. The algorithm is based on the use of the
decentralized average consensus (DAC) method [13], an
extremely efficient procedure for computing global averages
on a network, starting from local measurement vectors. From
a theoretical viewpoint, the proposed algorithm can be seen
as an extension of the ’learning by consensus’ (LBC) theory
outlined in a recent paper by Georgopoulos and Hasler
[14]. LBC is a general framework for turning any iterative
learning algorithm (defined in the centralized case) into a
fully distributed learning algorithm. This is achieved by a
two-step procedure. First, each node applies a local update
rule (e.g., a gradient descent step) using its own dataset.
This results in L local updated classifiers f1, . . . , fL, where
L is the number of nodes in the network. Then, the final
classifier is obtained by averaging the functions f1, . . . , fL
in a decentralized fashion using a DAC algorithm.

In this paper, we extend the LBC idea to the sequential
learning setting, and we apply the same two-step procedure
for training a RVFL in a decentralized, online manner. As
local update rule, a standard blockwise recursive least-square
(BRLS) method is used [15]. Successively, the resulting
algorithm is tested on four freely available music classifica-
tion benchmarks, showing that it compares favorably with a
RVFL trained in a centralized way using all the local datasets,
in terms of accuracy, speed and efficiency. Although in this
paper we focus on the application of the algorithm to music
classification tasks, we note that it can be considered as a
general decentralized procedure for training RVFL nets, thus



making it applicable to a wider range of domains. We will
come back on this point in the concluding remarks.

With respect to the state-of-the-art, the strengths of RVFL
neural networks for music classification tasks have been
explored previously in [1]. In particular, RVFL are linear-in-
the-parameters models, making them extremely efficient to
train even when confronted with large amounts of data (see
the benchmark experiments in [1]). Two distributed, batch
training algorithms for RVFLs were proposed in [9]. Under
this respect, the algorithm presented here can be seen as a
sequential extension of the DAC-based batch algorithm of
[9]. Additionally, we underline that the algorithm proposed
in this paper shares some similarities with the diffusion
recursive least-square (DRLS) [16], belonging to the family
of diffusion adaptive filters. Finally, since the algorithm is
based on a distributed average of multiple predictors, it
is connected to the parallelized, online ensemble literature
[17]. More generally, learning with distributed training data
is a highly active research topic in several scientific areas
(see [9, Section 1] and references therein). In particular,
significant work can be found for parallelizing gradient
descent optimization procedures in the context of big data
processing [18]. The DAC algorithm, instead, is fundamental
in several approaches to distributed learning, particularly in
the case of WSNs networks [13], [19] and with the use of
the Alternating Direction Method of Multipliers algorithm
(ADMM) [9], [20].

The rest of the paper is organized as follows. In Section
II we introduce the basic theory of RVFL training in the
centralized case, and the DAC method. Then, in Section III
we formulate the distributed music classification problem,
and describe the algorithm that we propose. To validate
our proposal, in Section IV we show experimental results
on several freely available music classification benchmarks.
Finally, in Section V we summarize our contribution and
outline future lines of research.

II. PRELIMINARIES

In this section we introduce briefly the basic theory
required for formulating our algorithm. In particular, we
describe the RVFL model in Section II-A, followed by the
BRLS training algorithm in Section II-B. Then, we describe
the DAC protocol in Section II-C.

A. Random Vector Functional-Link Nets

A RVFL net is a function mapping a generic input x 2 Rd

to a linear combination of B non-linear transformations of
the input itself [11], [12]:

f(x) =
BX

m=1

�mhm(x;wm) = �Th(x;w1, . . . ,wB) . (1)

Parameters w1, . . . ,wB in Eq. (1) are extracted from an uni-
form probability distribution at the beginning of the learning
process. Thus, the model is linear in the set of free parameters
�. Despite this simplification, it can be shown that model
(1) possesses universal approximation capability, provided

x1

x2

h1

h2

h3

y

β1

β2

β3

Fig. 1. Schematic depiction of a RVFL architecture with two inputs, three
hidden nodes, and one output. Fixed connections are shown as dashed lines,
whilst trainable connections as fixed lines.

a sufficiently large number of non-linear transformations is
adopted in Eq. (1) [12]. More precisely, under moderate
assumptions on the smoothness of the underlying function,
the approximation error of a RVFL net is in the order
O(

Cp
B
), for a given constant C 2 R independent of B

[12]. Clearly, the simplicity of model (1) is counter-balanced
by the need of having a large expansion block (i.e., a large
B), together with a possible increase in variance due to the
stochastic choice of the parameters w1, . . . ,wB .

For choosing the parameters �, suppose we are given a set
of N examples of the mapping that the model must satisfy,
in the form of a training set S:

S = {(x1, y1), . . . , (xN , yN )} . (2)

Moreover, define the hidden matrix H and the output vector
y as:

H = [h(x1) . . .h(xN )]

T , (3)
y = [y1 . . . yN ]

T , (4)

where we have dropped the parameterization of h(·) with
respect to the weights w1, . . . ,wB for readability. Then, the
optimal weight vector is obtained by solving the following
regularized least-square problem:

�⇤
= argmin

�2RB

1

2

kH� � yk22 +
�

2

k�k22 , (5)

where � 2 R is a scalar known as regularization factor.
Solution of problem (5) can be obtained in closed form as:

�⇤
=

�
HTH+ �I

��1
HTy . (6)

B. Sequential Learning for RVFL

In a sequential setting, the dataset S is not processed as a
whole, but it is presented in a series of batches (or chunks)
S1, . . . , ST such that:

T[

i=1

Si = S . (7)

This encompasses situations where training data arrives in a
streaming fashion, or the case where the dataset S is too large
for the matrix inversion in Eq. (6) to be practical. RVFLs
can be trained efficiently in the sequential setting by the use
of the BRLS algorithm [15]. Denote by �[n] the estimate



of the optimal weight vector after having observed the first
n chunks, and by Hn+1 and yn+1 the matrices collecting
the hidden nodes values and outputs of the (n+ 1)th chunk
Sn+1. BRLS recursively computes Eq. (6) by the following
two-step update:

P[n+ 1] = P[n]�P[n]HT
n+1M

�1
n+1Hn+1P[n] , (8)

�[n+ 1] = �[n] +P[n+ 1]HT
n+1 (yn+1 �Hn+1�[n]) ,

(9)

where we have defined:

Mn+1 = I+Hn+1P[n]HT
n+1 . (10)

The matrix P in Eq. (9) and Eq. (10) can be initialized as
P[0] = ��1I, while the weights �[0] as the zero vector. For a
derivation of the algorithm, based on the Sherman-Morrison
formula, and an analysis of its convergence properties we
refer the interested reader to [15].

C. Decentralized Average Consensus

For the rest of the paper, we will consider a network of
L interconnected agents, whose connectivity is known a-

priori and is fixed. Example of agents are computers in a
P2P network, sensors in a WSN, or robots in a robot swarm.
We can fully describe the connectivity between the nodes in
the form of an L⇥L connectivity matrix W, where Wij 6= 0

if and only if nodes i and j are connected. For simplicity, we
will assume that the network is connected (i.e., every node
can be reached from another node with a finite number of
steps), and undirected (i.e., W is symmetric).

DAC is a fundamental iterative network protocol to com-
pute global averages with respect to local measurements
of the nodes, requiring only local communications between
them [13], [14], [19]. Its simplicity makes it suitable for
implementation even in the most basic networks [14]. In par-
ticular, suppose that at the beginning of the DAC algorithm
every node k has a measurement (column) vector denoted by
✓k[0], k = 1 . . . L. Then, at a generic iteration n+ 1, every
node computes the following update:

✓k[n+ 1] =

LX

j=1

Wkj✓j [n] . (11)

Defining the matrix ✓[n] =
⇥
✓1[n] . . .✓L[n]

⇤
, Eq. (11) can

be written compactly as:

✓[n+ 1] = W✓[n] . (12)

If the weights of the connectivity matrix W are chosen ap-
propriately, this recursive procedure converges to the global
average given by [13], [14]:

lim

n!+1
✓k[n] =

1

L

LX

k=1

✓k[0], 8k 2 {1, 2, . . . , L} . (13)

Practically, the procedure can be stopped after a certain
number of iterations is reached, or when the norm of the

update is smaller than a given user-defined threshold �:
���✓k[n+ 1]� ✓k[n]

���
2

2
< �, 8k 2 {1, 2, . . . , L} . (14)

In the case of undirected, connected networks, a simple way
of ensuring convergence is given by choosing the so-called
‘max-degree’ weights for the connectivity matrix W [13]:

Wkj =

8
><

>:

1
d+1 if k is connected to j

1� dk
d+1 if k = j

0 otherwise
, (15)

where dk is the degree of node k, and d is the maximum
degree of the network.1

III. DISTRIBUTED MUSIC CLASSIFICATION

In this section we describe the problem of distributed
music classification in Section III-A, followed by the illus-
tration and application of our distributed training algorithm
for RVFL nets in Section III-B.

A. Problem Statement

In music classification, we suppose that the input x 2
Rd to the model is given by a suitable d-dimensional
representation of a song. Examples of features that can be
used in this sense include temporal features such as the
zero-crossing count, compact statistics in the frequency and
cepstral domain [2], [6], higher-order descriptors (e.g. timbre
[5]), meta-information on the track (e.g., author), and social
tags extracted from the web [7]. Features can also be learned
from the musical data itself [21]. The output is instead given
by one of M predefined classes, where each class represents
a particular categorization of the song, such as its musical
genre. In our experiments, we consider the standard M bit
encoding for the output, associating to an input xi a single
output vector yi of M bits, where if its elements are yij = 1

and yik = 0, k 6= j, then the corresponding pattern is of class
j. We can retrieve the actual class from the M -dimensional
RVFL output as:

Class of x = argmax

j=1...M
fj(x) , (16)

where fj(x) is the jth element of the M -dimensional output
f(x). The derivation in Section II-A extends trivially to the
situation of multiple outputs. In this case, � becomes a B⇥
M matrix and the output vector y becomes an N⇥M matrix,
where the ith row corresponds to the M -dimensional output
yT
i of the training set. Additionally, we replace the L2-norm

on vectors in (5) with a suitable matrix norm.
We will assume that the training data is distributed

throughout a network of nodes, and each node k receives
a sequence of chunks Sk,1, . . . , Sk,T . The task if for all the
nodes, after receiving any new chunk of data, to agree on a
single RVFL model, whose generalization capability should
approximate reasonably well that of a single RVFL model
trained by first collecting all the local batches. For generality

1The degree of a node is the number of nodes in the network to which
it is directly connected.



purposes, we assume that exchange of the local datasets is
forbidden, and that the nodes are allowed to communicate
only with their direct neighbors. In the following, we present
a decentralized, sequential learning algorithm for RVFL
models fulfilling all these properties.

B. Consensus-based Sequential RVFL

The proposed training algorithm is based on alternating
local update steps, through the use of the BRLS algorithm
described in Section II-B, and global averaging steps, using
the DAC protocol presented in Section II-C. Practically, we
consider the following algorithm:

1) Initialization: the nodes agree on parameters
w1, . . . ,wB in Eq. (1). In particular a single node,
chosen with a leader election strategy [9], can extract
them at random and broadcast them to the rest of the
network. Moreover, all the nodes initialize their own
local estimate of the P matrix in Eq. (8) and Eq. (10)
as Pk[0] = ��1I, and their estimate of the output
weight vector as �k[0] = 0.

2) At every iteration n + 1, each node k receives a new
batch Sk,n+1. The following steps are performed:

2.1) Local update: every node computes (locally) its
estimate �k[n + 1] using Eqs. (8)-(9) and local
data Sk,n+1.

2.2) Global average: the nodes agree on a single pa-
rameter vector by averaging their local estimates
with a DAC protocol. The final weight vector at
iteration n+ 1 is then given by:

�[n+ 1] =

1

L

LX

k=1

�k[n+ 1] . (17)

As we stated in Section I, this algorithm can be justified as
an extension of the ’learning by consensus’ theory outlined
in [14], or as a decentralized bagging procedure over linear
predictors [17].

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We tested the proposed algorithm on four freely available
music classification benchmarks. A schematic description of
their characteristics is given in Table I. Below we provide
more information on each of them.

• Garageband [22] is a genre classification dataset, con-
sidering 1856 songs and 9 different genres (alternative,
blues, electronic, folkcountry, funksoulrnb, jazz, pop,
raphiphop and rock). The input is given by 49 features
extracted according to the procedure detailed in [22].

• LMD is another genre classification task, of higher
difficulty [3]. In this case, we have 3160 different songs
categorized in 10 Latin American genres (tango, bolero,
batchata, salsa, merengue, ax, forr, sertaneja, gacha and
pagode). The input is a 30-dimensional feature vector,
extracted from the middle 30 seconds of every song.

• Artist20 is an artist recognition task comprising 1413

songs distributed between 20 different artists [5]. The
30-dimensional input vector comprises both Mel Fre-
quency Cepstral Coefficients (MFCC) and chroma fea-
tures (see [5] for additional details).

• YearPredictionMSD is a year recognition task derived
from the subset of the million song dataset [23] available
on the UCI machine learning repository.2 It is a dataset
of 500000 songs categorized by year. In our experiment,
we consider a simplified version comprising only the
initial 200000 songs, and the following binary classi-
fication output: a song is of class (a) if it was written
previously than 2000, and of class (b) otherwise. This is
a meaningful task due to the unbalance of the original
dataset with respect to the decade 2001� 2010.

In all cases, input features were normalized between �1 and
+1 before the experiments. Testing accuracy is computed
over a 10-fold cross-validation of the data, and every experi-
ment is repeated 50 times to average out randomness effects
due to the initialization of the parameters. Additionally, to
increase the dataset size, we artificially replicate twice the
training data for all datasets, excluding YearDatasetMSD.

We consider networks of 8 nodes, whose topology is
constructed according to the so-called ‘Erdős�Rényi model’.
In particular, every pair of nodes in the network has a 20%

probability of being connected, with the only constraint that
the overall network is connected. Training data is distributed
evenly across the nodes, and chunks are constructed such
that every batch is composed of approximately 20 examples
(100 for the YearPredictionMSD dataset). We compare the
following algorithms:

• Consensus-based RVFL (CONS-RVFL): this is trained
according to the DAC-based algorithm detailed in Sec-
tion III-B. For the DAC procedure, we set the maximum
number of iterations to 300, and � = 10

�4.
• Centralized RVFL (C-RVFL): this is a RVFL trained

by first collecting all the local chunks and aggregating
them in a single batch. It can be considered as an upper
bound on the performance of CONS-RVFL.

• Local RVFL (L-RVFL): in this case, nodes update their
estimate using their local batch, but no communication
is performed. Final misclassification error is averaged
across the nodes. This can be considered as a worst-
case baseline for the performance of any distributed
algorithm.

In all cases, we use sigmoid hidden functions given by:

h(x;w, b) =
1

1 + exp {�wTx+ b} . (18)

where parameters w and b in (18) are assigned randomly
from an uniform distribution over the interval [�1,+1]. Op-
timal parameters for C-RVFL are found by executing an inner
3-fold cross-validation on the training data. In particular, we
search the uniform interval {50, 100, 150, . . . , 1000} for the
number of hidden nodes, and the exponential interval 2

j ,

2https://archive.ics.uci.edu/ml/



TABLE I
GENERAL DESCRIPTION OF THE DATASETS. ADDITIONAL INFORMATION ON EACH OF THEM IS PROVIDED IN SECTION IV-A.

Dataset name Features Instances Task Classes Reference

Garageband 49 1856 Genre recognition 9 [22]

Latin Music Database (LMD) 30 3160 Genre recognition 10 [3]

Artist20 30 1413 Artist recognition 20 [5]

YearPredictionMSD 90 200000 Decade identification 2 [23]

TABLE II
OPTIMAL PARAMETERS FOUND BY THE GRID-SEARCH PROCEDURE.

Dataset Hidden nodes �

Garageband 300 2�3

LMD 400 2�2

Artist20 200 2�4

YearPredictionMSD 300 1

TABLE III
FINAL MISCLASSIFICATION ERROR AND TRAINING TIME FOR THE THREE

MODELS, TOGETHER WITH STANDARD DEVIATION. THE PROPOSED

ALGORITHM IS HIGHLIGHTED IN BOLD. TRAINING TIME FOR

CONS-RVFL AND L-RVFL IS AVERAGED OVER THE NODES.

Dataset Algorithm Error Time [secs]

Garageband
C-RVFL 0.40 ± 0.02 0.24 ± 0.09

L-RVFL 0.45 ± 0.03 0.13 ± 0.03

CONS-RVFL 0.40 ± 0.02 0.15 ± 0.04

LMD
C-RVFL 0.25 ± 0.02 0.70 ± 0.17

L-RVFL 0.31 ± 0.03 0.46 ± 0.08

CONS-RVFL 0.26 ± 0.02 0.49 ± 0.10

Artist20
C-RVFL 0.37 ± 0.04 0.13 ± 0.07

L-RVFL 0.47 ± 0.04 0.06 ± 0.01

CONS-RVFL 0.37 ± 0.04 0.09 ± 0.02

YearPredictionMSD
C-RVFL 0.27 ± 0.01 8.66 ± 0.93

L-RVFL 0.27 ± 0.01 2.35 ± 0.48

CONS-RVFL 0.27 ± 0.01 2.46 ± 0.62

j 2 {�10,�9, . . . , 9, 10} for �. These parameters are then
shared with L-RVFL and CONS-RVFL. Resulting parameters
from the grid search procedure are listed in Table II. All
experiments are performed using MATLAB R2013b on an
Intel Core2 Duo E7300, @2.66 GHz and 2 GB of RAM.

B. Results and Discussion

We start our discussion of the results by analyzing the final
misclassification error and training time for the three models,
reported in Table III. Results of the proposed algorithm,
CONS-RVFL, are highlighted in bold. Clearly, whenever we
consider medium-sized datasets, the performance of L-RVFL
is strictly worse than the performance of C-RVFL, ranging
from an additional 5% misclassification error for Garageband
and LMD, up to an additional 10% for Artist20. Although

this is a trivial result, it stresses the importance of leveraging
all available data to obtain good performances. The most
important fact highlighted in Table III, however, is that
CONS-RVFL is able to efficiently match the performance
of C-RVFL in all situations, except for a small decrease
in the LMD dataset. From a computational perspective, this
performance is achieved with a very small overhead in term
of training time with respect to L-RVFL in all cases (as
evidenced by the fourth column in Table III).

In a sequential setting, the evolution of the testing error
after every batch is equally as important as the final accuracy
obtained. We report it in Fig. 2(a)-(d) for the four datasets.
Performance of C-RVFL, L-RVFL and CONS-RVFL are
shown with dashed black, solid red and solid blue lines
respectively. Moreover, performance of L-RVFL is averaged
across the nodes. Once again, we see that CONS-RVFL
is able to track very efficiently the accuracy obtained by
C-RVFL. The performance is practically equivalent in the
Garageband and YearPredictionMSD datasets (Fig. 2(a) and
Fig. 2(d)), while convergence speed is slightly slower in the
LMD and Artist20 case (Fig. 2(b) and Fig. 2(c)), although
by a small amount.

Next, we investigate the behavior of CONS-RVFL when
varying the size of the network. In fact, due to its parallel
nature, we expect that, the higher the number of nodes,
the lower the training time (apart from communication bot-
tlenecks, depending on the real channel of the network).
The following experiments show that the increase in time
required by the DAC procedure for bigger networks is
more than compensated by the gain in time obtained by
processing a lower number of samples per node. To this
end, we consider the training time required by CONS-RVFL
when varying the number of nodes of the network from
2 to 14 by steps of 2, keeping the same topology model
as before. Results of this experiment are presented in Fig.
3(a) for datasets Garageband and Artist20, and in Fig. 3(b)
for datasets LMD and YearPredictionMSD. The decrease
in training time is extremely pronounced for Garageband,
with a five-fold decrease going from 2 to 14 nodes, and for
YearPredictionMSD, with a seven-fold decrease. This result
is especially important, showing that CONS-RVFL can be
efficiently used in large-scale situations. It is also consistent
with the analysis of the batch DAC-based RVFL [9].

Similarly, the number of consensus iterations needed to
reach the desired accuracy is shown in Fig. 4. Although the
required number of iterations grows approximately linearly



0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

E
rr

o
r 

[%
]

 

 
C−RVFL

CONS−RVFL

L−RVFL

(a) Dataset Garageband

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

E
rr

o
r 

[%
]

 

 
C−RVFL

CONS−RVFL

L−RVFL

(b) Dataset LMD

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

E
rr

o
r 

[%
]

 

 
C−RVFL

CONS−RVFL

L−RVFL

(c) Dataset Artist20

0 50 100 150
0.25

0.3

0.35

0.4

0.45

Number of iterations

E
rr

o
r 

[%
]

 

 
C−RVFL

CONS−RVFL

L−RVFL

(d) Dataset YearPredictionMSD

Fig. 2. Evolution of the testing error after every iteration. Performance of L-RVFL is averaged across the nodes.

with respect to the size of the network, a low number of
iterations is generally enough to reach convergence to a
very good accuracy. In fact, no experiment in this section
required more than 35 iterations in total. Additionally, the
consensus procedure is extremely robust to a change in the
network topology, as shown in [9, Section 5.2]. The same
considerations apply here.

V. CONCLUSIONS

In this paper, we have detailed an algorithm for sequential,
distributed learning of a RVFL net, based on alternating
local update and global averaging steps. We have focused
on its application to multiple distributed music classification
tasks, including genre and artist recognition. These problems
arise frequently in real-world scenarios, including P2P and
mobile networks. Our experimental results show that the
proposed algorithm can be efficiently applied in these sit-
uations, and compares favorably with a centralized solution
in terms of accuracy and speed. Clearly, the algorithm can be
successfully applied to distributed learning problems laying

outside the applicative domain of this paper, particularly in
real-world big data applications. Moreover, although in this
paper we have focused on local updates based on the BRLS
algorithm, nothing prevents the framework from being used
with different rules, including efficient stochastic gradient
descent updates. Currently, the main limitation of the algo-
rithm is the need for a global synchronization method over
the network for the DAC procedure, and the assumption of a
fixed topology. Although these are standard assumptions in
the distributed learning literature, they can be a limitation in
extremely variable settings such as particular P2P networks
[10]. Future work will consider the use of asynchronous
consensus strategies [24] to this end.

REFERENCES

[1] S. Scardapane, D. Comminiello, M. Scarpiniti, and A. Uncini, “Music
classification using extreme learning machines,” in 2013 8th Inter-

national Symposium on Image and Signal Processing and Analysis

(ISPA). IEEE, 2013, pp. 377–381.
[2] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A survey of audio-

based music classification and annotation,” IEEE Transactions on

Multimedia, vol. 13, no. 2, pp. 303–319, 2011.



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes

T
ra

in
in

g
 t

im
e 

[s
ec

s]

 

 
Garageband

Artist20

(a) Datasets Garageband and Artist20

0 5 10 15
0

1

2

3

4

5

6

7

8

Number of nodes

T
ra

in
in

g
 t

im
e 

[s
ec

s]

 

 
LMD

YearPredictionMSD

(b) Dataset LMD and YearPredictionMSD

Fig. 3. Training time required by CONS-RVFL, for varying sizes of the network, from 2 to 14 by steps of 2.

0 5 10 15
0

5

10

15

20

25

30

35

40

45

Number of nodes

C
o

n
se

n
su

s 
it

er
at

io
n

s

 

 
Garageband

LMD

Artist20

YearPredictionMSD

Fig. 4. Number of consensus iterations required to reach convergence,
when varying the number of nodes in the network from 2 to 14.

[3] C. N. Silla, C. A. A. Kaestner, and A. L. Koerich, “Automatic music
genre classification using ensemble of classifiers,” in 2007 IEEE

International Conference on Systems, Man and Cybernetics. IEEE,
2007, pp. 1687–1692.

[4] A. Rizzi, N. M. Buccino, M. Panella, and A. Uncini, “Genre classi-
fication of compressed audio data,” in 2008 IEEE 10th Workshop on

Multimedia Signal Processing, Oct 2008, pp. 654–659.
[5] D. P. W. Ellis, “Classifying music audio with timbral and chroma

features,” in Proceedings of the 8th International Conference on Music

Information Retrieval. Austrian Computer Society, 2007, pp. 339–
340.

[6] A. Eronen, “Comparison of features for musical instrument recogni-
tion,” in 2001 IEEE Workshop on the Applications of Signal Processing

to Audio and Acoustics. IEEE, 2001, pp. 19–22.
[7] L. Chen, P. Wright, and W. Nejdl, “Improving music genre classifi-

cation using collaborative tagging data,” in Proceedings of the second

ACM international conference on web search and data mining. ACM,
2009, pp. 84–93.

[8] S. Ravindran, D. Anderson, and M. Slaney, “Low-power audio classi-
fication for ubiquitous sensor networks,” in 2004 IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP’04),
vol. 4. IEEE, 2004, pp. iv–337–iv–340.

[9] S. Scardapane, D. Wang, M. Panella, and A. Uncini, “Distributed
Learning with Random Vector Functional-Link Networks,” Informa-

tion Sciences (under review), 2015.
[10] P. Han, B. Xie, F. Yang, and R. Shen, “A scalable p2p recommender

system based on distributed collaborative filtering,” Expert systems

with applications, vol. 27, no. 2, pp. 203–210, 2004.
[11] M. Alhamdoosh and D. Wang, “Fast decorrelated neural network

ensembles with random weights,” Information Sciences, vol. 264, pp.
104–117, 2014.

[12] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE

Transactions on Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995.
[13] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and

cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.
[14] L. Georgopoulos and M. Hasler, “Distributed machine learning in

networks by consensus,” Neurocomputing, vol. 124, pp. 2–12, Jan.
2014.

[15] A. Uncini, Fundamentals of adaptive signal processing. Springer,
2014.

[16] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE

Transactions on Signal Processing, vol. 56, no. 5, pp. 1865–1877,
2008.

[17] A. Fern and R. Givan, “Online ensemble learning: An empirical study,”
Machine Learning, vol. 53, no. 1-2, pp. 71–109, 2003.

[18] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” The Journal of

Machine Learning Research, vol. 13, pp. 165–202, 2012.
[19] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Distributed detection

and estimation in wireless sensor networks,” in E-Reference Signal

Processing, R. Chellapa and S. Theodoridis, Eds. Elsevier, 2013, pp.
329–408.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends

R� in Machine

Learning, vol. 3, no. 1, pp. 1–122, 2011.
[21] S. Sigtia and S. Dixon, “Improved music feature learning with deep

neural networks.” in 2014 IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP’14), vol. 1. IEEE, 2014,
pp. 6959–6963.

[22] I. Mierswa and K. Morik, “Automatic feature extraction for classifying
audio data,” Machine learning, vol. 58, no. 2-3, pp. 127–149, 2005.

[23] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in Proceedings of the 12th International Society

for Music Information Retrieval Conference. University of Miami,
2011, pp. 591–596.

[24] F. Xiao and L. Wang, “Asynchronous consensus in continuous-time
multi-agent systems with switching topology and time-varying delays,”
IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1804–
1816, 2008.


