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Abstract—Distributed learning refers to the problem of in-
ferring a function when the training data is distributed among
different nodes. While significant work has been done in the
contexts of supervised and unsupervised learning, the intermedi-
ate case of semi-supervised learning in the distributed setting has
received less attention. In this paper, we propose an algorithm for
this class of problems, by extending the framework of manifold
regularization. The main component of the proposed algorithm
consists of a fully distributed computation of the adjacency
matrix of the training patterns. To this end, we propose a
novel algorithm for low-rank distributed matrix completion,
based on the framework of diffusion adaptation. Overall, the
distributed semi-supervised algorithm is efficient, scalable, and
it can preserve privacy by the inclusion of flexible privacy-
preserving mechanisms for similarity computation. Experimental
results and comparison on a wide range of standard semi-
supervised benchmarks validate our proposal.

Index Terms—Semi-supervised Learning; Distributed Learn-
ing; Privacy-preserving; Matrix Completion

I. INTRODUCTION

THE field of distributed learning (DL) is concerned with
solving a learning problem, whenever the training data

is distributed among a network of interconnected nodes [1]–
[3]. Typically, we require DL protocols that are able to scale
efficiently to large networks, without reliance on a single
coordinating node or broadcasting capabilities. Research on
this field is vast, including algorithms for DL on wireless
sensor networks (WSNs) [4], peer-to-peer (P2P) networks
[5], [6], distributed databases [7], and so on. Currently, re-
search has focused mostly on the supervised and unsupervised
learning settings. Examples of the former are algorithms for
distributed neural networks [2], [8], distributed support vector
machines [9]–[11], and distributed LASSO [3], [12]. For the
latter, we can cite strategies for distributed clustering [13], and
distributed dictionary learning [14].

In this sense, many crucial sub-areas of machine learn-
ing remain to be extended to the fully distributed scenario.
Among these, the DL setting could benefit strongly from
the availability of distributed protocols for semi-supervised
learning (SSL) [15]. In SSL, it is assumed that the labeled
training data is supplemented by additional unlabeled data,
which has to be suitably exploited in order to improve the test
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Fig. 1. Depiction of SSL over a network of agents. Each agent receives a
labeled training dataset, together with an unlabeled one. The task is for all
the nodes to converge to a single model, by exploiting all their local datasets.

accuracy. Frequently, labeled data is scarce while unlabeled
data is abundant, making the design of efficient SSL algo-
rithms critical for good performance. Currently, state-of-the-art
research on SSL is concerned on the single-agent (centralized)
case, e.g. with the use of manifold regularization (MR) [16],
[17], transductive learning [18], and several others. To the
best of our knowledge, the case of SSL over multiple agents
has been addressed only in very specific settings, such as
localization over WSNs [19], while no algorithm is available
for the general case. However, we argue that such an algorithm
would be well suited for a wide range of applications. As
an example, consider the case of medical diagnosis, with
labeled and unlabeled data distributed over multiple clinical
databases [20]. Other examples include distributed multimedia
classification over peer-to-peer networks, distributed music
classification [21], distributed sensor inference [22], [23], and
so on. In all of them, labeled data at every agent is costly to
obtain, while unlabeled data is plentiful.

The overall setting is summarized in Fig. 1, where each
agent in a network receives two training datasets, one com-
posed of labeled patterns and one composed of unlabeled pat-
terns. Through local communication, all of them have to agree
on the parameters of a single model, whose generalization
performance should be comparable to having an (ideal) cen-
tralized agent collecting all the local datasets prior to training
and solving the global optimization problem. By exploiting
a fully distributed algorithm, as opposed to a centralized
solution, it is possible to avoid communication bottlenecks on
the network [8], preserve the privacy for sensible applications
[24], and deploy the resulting algorithm even on largely
unstructured networks, such as specific WSNs. We note that in
DL, privacy has a very specific meaning. Particularly, we say



2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

that an algorithm is ‘privacy-preserving’ whenever an agent is
not requested to communicate its training patterns, which in
sensible applications can be considered as a breach of private
information.

In this paper, we propose the first fully distributed algorithm
for SSL over networks, satisfying the above requirements. In
particular, we extend an algorithm belonging to the MR family,
namely laplacian regularized least-square (LapRLS) [16]. MR
algorithms, originated in the seminal works of [25] and [16],
are based on the assumption that data often lie in a low-
dimensional manifoldM embedded in the higher-dimensional
input space. When the structure of the manifold is unknown,
it can be approximated well by a weighted graph where the
vertexes are represented by the data points and the weights of
the edges represent a measure of similarity between the points.
In the MR framework, the classification function is obtained
by solving an extension of the classical regularized optimiza-
tion problem, with an additional regularization term, which
incorporates information about the function’s smoothness on
the manifold.

The algorithm presented in this paper starts from the obser-
vation that, in the MR optimization problem, information is
mostly encoded in a matrix D of pairwise distances between
patterns. In fact, both the additional regularization term, and
the kernel matrix (for any translation-invariant kernel function
[26]) can be computed using the information about the distance
between points. In the distributed setting, each agent can
compute this matrix relatively only to its own training data,
while information about the distance between points belonging
to different agents are unknown. Obtaining this information
would allow a very simple protocol for solving the overall
optimization problem. As a consequence, we subdivide the
training algorithm in two steps: a distributed protocol for
computing D, followed by a distributed strategy for solving
the optimization problem.

For the former step, in the initial phase of the algorithm,
we allow a small exchange of data patterns between agents. In
this phase, privacy can be preserved with the inclusion of any
privacy-preserving protocol for the computation of distances
[24], [27]. For completeness, we describe the strategies that
are used in our experiments in Section II-C. As a second
step, we recover the rest of the global distance matrix D
by building on previous works on Euclidean distance matrix
(EDM) completion [28]–[31]. To this end, we consider two
strategies. The first one is a simple modification of the state-
of-the-art algorithm presented in [32], [33], which is based
on a column-wise partitioning of D over the agents. In this
paper, we modify it to take into account the specific nature
of Euclidean distance matrices, by the incorporation of non-
negativity and symmetry constraints. As a second strategy,
we propose a novel algorithm for EDM completion, which is
inspired to the framework of diffusion adaptation (DA) [34].
Our algorithm works by interleaving gradient descent steps
with local interpolation of a suitable low-rank factorization of
D. While the first algorithm has a lower computational cost,
we found that this comes at the cost of a worse performance,
particularly when the sampling set of the matrix to complete
is small. On the opposite, our algorithm exploits the particular

structure of EDMs, at the cost of a possibly greater compu-
tational demanding. We discuss in more detail the advantages
and disadvantages of the two approaches in Section III and in
the experimental section.

As we stated before, once the matrix D is known, solving
the rest of the optimization problem is trivial. In this paper
we focus on the LapRLS algorithm, and we show that its
distributed version can be solved using a single operation of
sum over the network. This can be performed efficiently with
the use of standard routines, such as the distributed consensus
protocol [35], [36]. Due to space constraints, we leave the
investigation of other MR algorithms (e.g. the laplacian SVM)
to future works.

The rest of the paper is structured as follows: in Section II
we introduce the theoretical tools upon which our algorithm
is based. In particular, we detail the problem of SSL in the
framework of MR in Section II-A, some notions of EDM
completion in Section II-B, and two strategies for privacy-
preserving similarity computation in Section II-C. In Section
III we propose our algorithm to complete an EDM in a
decentralized fashion. Then, Section IV details the proposed
framework for distributed LapRLS. In Section V we present
the results for both the distributed EDM completion and
distributed LapRLS. Finally, Section VI concludes the paper
with possible future developments.

Notation

In the rest of the paper, vectors are denoted by boldface
lowercase letters, e.g. a, while matrices are denoted by bold-
face uppercase letters, e.g. A. All vectors are assumed to be
column vectors unless otherwise specified. Symbol ai denotes
the ith element of vector a, and Aij the (i,j) entry of the
matrix A. The operator ‖·‖2 is the standard L2 norm on an
Euclidean space. Finally, the notation a[n] is used to denote
dependence with respect to a time-instant n in an iterative
procedure.

II. PRELIMINARIES

In this section we introduce some concepts that are used in
the development of our algorithm. We start by describing the
basic setting of SSL in Section II-A. Then, we introduce the
matrix completion problem and its application to the EDMs
in Section II-B. As the last point, in Section II-C we report
some results on privacy-preserving similarity computation.

A. Semi-supervised learning

In the SSL setting, the learning machine is provided with a
set of l input/output labeled data S = {(x1, y1), . . . , (xl, yl)}
and a set of u unlabeled data U = {xl+1, . . . ,xl+u} [15].
In the following, inputs are assumed to be d-dimensional
real vectors x ∈ X ⊆ Rd, while outputs are assumed to
be scalars y ∈ Y ⊆ R. The discussion can be extended
straightforwardly to the case of a multi-dimensional output.
It is assumed that labeled data is generated according to a
joint probability distribution PX,Y , while unlabeled data are
generated according to the marginal distribution PX of PX,Y

[15].
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In this paper, we consider one particular class of SSL
algorithms belonging to the family of MR [16]. Practically,
MR learning algorithms are based on three assumptions.

- Smoothness assumption: if two points x1,x2 ∈ X are
close in the intrinsic geometry of PX , then their condi-
tional distributions P(y | x1) and P(y | x2) are similar.

- Cluster assumption: the decision boundary should lie in
a low-density region of the input space X .

- Manifold assumption: the marginal distribution PX is
supported on a low-dimensional manifold M embedded
in X .

Let HK be a Reproducing Kernel Hilbert Space defined by
the kernel function K : X × X → R with norm ‖f‖2K , the
approximation function for the SSL problem is estimated by
solving:

f∗ = argmin
f∈HK

l∑
i=1

V (xi, yi, f) + γA‖f‖2K + γI‖f‖2I , (1)

where V (·, ·, ·) is a suitable loss function, ‖f‖2I is a penalty
term that penalizes the structure of f with respect to the
manifold and γA, γI ≥ 0 are the regularization parameters.
Usually, the structure of the manifold M is unknown and it
must be estimated from both labeled and unlabeled data. In
particular, we can define an adjacency matrix W ∈ Rl+u×l+u,
where each entry Wij is a measure of similarity between
patterns xi and xj (see [16] for possible ways of constructing
this matrix). Using this, the regularization term ‖f‖2I can be
rewritten as [16]:

‖f‖2I = fTLf , (2)

where L ∈ Rl+u×l+u is the data adjacency graph Laplacian,
given by L = G − W, with G a diagonal matrix with
elements Gii =

∑N
j=1Wij . Practically, the overall manifold

M is approximated with an adjacency graph, which can be
computed from both labeled and unlabeled data. In order to
obtain better performances, usually a normalized Laplacian
L̂ = G−1/2LG−1/2, or an iterated version L̂

q
, q > 0, is

used [16]. An extension of the classical Representer Theorem
proves that the function f∗ is in the form of:

f∗(x) =

N∑
i=1

αiK(x,xi) , (3)

where N = l+u and αi are weight parameters. As we stated
in the introduction, for simplicity in this paper we focus on a
particular algorithm belonging to this framework, denoted as
LapRLS. This is obtained by substituting Eq. (3) into problem
(1) and setting a squared loss function:

V (xi, yi, f) = ‖yi − f(xi)‖22 . (4)

Considering the dual optimization problem, by the optimality
conditions the final parameters vector α∗ = [α1, . . . , αN ]

T is
easily obtained as:

α∗ = (JK + γAI + γILK)
−1

ŷ , (5)

where ŷ is an N -dimensional vector with components:

ŷi =

{
yi if i ∈ {1, . . . , l}
0 if i ∈ {l + 1, . . . , l + u}

, (6)

J is an N ×N diagonal matrix with elements:

Jii =

{
1 if i ∈ {1, . . . , l}
0 if i ∈ {l + 1, . . . , l + u}

, (7)

and finally K is the N ×N kernel matrix defined by {Kij =
K (xi,xj)}.

B. (Euclidean) matrix completion

The second notion that will be used in the proposed
algorithm is the EDM completion problem [37]. A matrix
completion problem is defined as the problem of recovering
the missing entries of a matrix only from a set of known entries
[29]. This problem has many practical applications, i.e. sensors
localization, covariance estimation and customer recommenda-
tions, and it was largely investigated in the literature.

In this paper, we focus on completion of the square matrix
D ∈ RN×N containing the pairwise distances among the
training patterns, i.e.:

Dij = ‖xi − xj‖22 ∀i, j = 1, . . . , N . (8)

D is called an Euclidean Distance Matrix (EDM). Clearly,
Eq. (8) implies that D is symmetric and Dii = 0 for all the
elements on the main diagonal. It is possible to show that the
rank r of D is upper bounded by d + 2, meaning that D is
low-rank whenever d� N , which is common in all practical
applications.

In the following, we suppose to have observed only a subset
of entries of D, in the form of a matrix D̂. More formally,
there exists a matrix with binary entries Ω ∈ [0, 1]

N×N such
that:

D̂ =

{
D̂ij = Dij if Ωij = 1

D̂ij = 0 otherwise
. (9)

We wish to recover the original matrix D from D̂, i.e. we
want to solve the following optimization problem:

min
D∈EDM(N)

∥∥∥Ω ◦ (D̂−D
)∥∥∥2

F
, (10)

where ◦ denotes the Hadamard product between two matrices,
EDM(N) is the set of all EDMs of size N , and ‖A‖F is the
Frobenius norm of matrix A. It is possible to reformulate prob-
lem in Eq. (10) as a semidefinite problem by considering the
Schoenberg mapping between EDMs and positive semidefinite
matrices [37]:

min
D

∥∥∥Ω ◦ [D̂− κ(D)
]∥∥∥2

F

s. t. D � 0
, (11)

where D � 0 means that D is positive semidefinite and:

κ(D) = diag(D)1T + 1diag(D)T − 2D , (12)

such that diag(D) extracts the main diagonal of D as a
column vector. This observation motivated most of the initial
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research on EDM completion [37]. Recently, an alternative
formulation was proposed in [31], which exploits the fact that
every positive semidefinite matrix D with rank r admits a
factorization {D = VVT}, where V ∈ RN×r

∗ = {V ∈
RN×r : det (VTV) 6= 0}. Using this factorization and
assuming we know the rank of D, problem (11) can be
reformulated as:

min
VVT∈S+(r,N)

∥∥∥Ω ◦ [D̂− κ (VVT)]∥∥∥2
F
, (13)

where we have:

S+(r,N) = {U ∈ RN×N : U = UT � 0, rank (U) = r} .
(14)

C. Privacy-preserving similarity computation

As we stated in the introduction, a fundamental step in the
algorithm presented in this paper is a distributed computation
of similarity between two training patterns, i.e. a distributed
computation of a particular entry of D. If these patterns cannot
be exchanged over the network, e.g. for privacy reasons, there
is the need of implementing suitable protocols for privacy-
preserving similarity computation. To show the applicability
of the proposed approach, in our experimental simulations we
make use of two state-of-the-art solutions to this problem. For
completeness, we detail them here briefly.

More formally, the problem can be stated as follows. Given
two training patterns xi,xj ∈ Rd, belonging to different
agents, we want to compute xT

i xj , without revealing the
two patterns. Clearly, computing the inner product allows
the computation of several other distance metrics, including
the standard L2 Euclidean norm. The first strategy that we
investigate here is the random projection-based technique de-
veloped in [38]. Suppose that both agents agree on a projection
matrix R ∈ Rm×d, with m < d, such that each entry Rij is
independent and chosen from a normal distribution with mean
zero and variance σ2. We have the following lemma:

Lemma 1. Given two input patterns xi,xj , and the respective
projections:

ui =
1√
mσ

Rxi, and uj =
1√
mσ

Rxj , (15)

we have that:
E
{
uT
i uj

}
= xT

i xj . (16)

Proof. See [38, Lemma 5.2].

In light of Lemma 1, exchanging the projected patterns instead
of the original ones allows to preserve, on average, the inner
product. A thorough investigation on the privacy-preservation
guarantees of this protocol can be found in [38]. Additionally,
we can observe that this protocol provides a reduction on
the communication requirements of the application, since it
effectively reduces the dimensionality of the patterns to be
exchanged by a factor m/d.

The second protocol that we investigate in our experimental
section is a more general (nonlinear) transformation introduced

in [39]. It is given by:

v = b + Q tanh (a + Cx) , (17)

for a generic input pattern x, where b ∈ Rm, Q ∈ Rm×t,
a ∈ Rt, C ∈ Rt×d are matrices whose entries are drawn from
normal distributions with mean zero and possibly different
variances. As in the previous method, it is possible to show
that the inner product is approximately preserved, provided
that the input patterns are not “outliers” in a specific sense.
See [39] for more details and an analysis of the privacy-
preservation capabilities of this scheme. Again, choosing t and
m allows to balance between a more accurate reconstruction
and a reduction on the input dimensionality.

The field of privacy-preserving similarity computation, and
more in general privacy-preserving data mining, is vast and
with more methods introduced each year. Although we have
chosen these two protocols due to their wide diffusion and
simplicity, we stress that our algorithm does not depend
specifically on any of them. We refer to [24], [27], [40] for
more general investigations on this field.

III. DISTRIBUTED LAPLACIAN ESTIMATION

In this section, we start by formulating a problem of
distributed estimation of L in Section III-A. Then, we focus on
two algorithms for its solution. The first is a modification of a
state-of-the-art algorithm, described in Section III-B, while the
second is a fully novel protocol which is based on the ideas
of ‘diffusion adaptation’ [34] introduced in Section III-C.

A. Formulation of the problem

In the distributed Laplacian estimation problem, we suppose
that both the labeled data and the unlabeled data are distributed
through a network of L interconnected agents, as shown in
Fig. 1. The connectivity within the agents is fixed and known
a priori in the form of a matrix C ∈ RL×L, where Cij 6= 0
if and only if agents i and j are connected, and the value of
the element represents the weight that agent j assigns to the
information originated from agent i. We denote with Nk the
set of neighbors of the kth agent, i.e. the set of indexes i such
that Cki 6= 0. Possible choices of the connectivity weights for
fixed and undirected topologies are discussed in [41].

Without loss of generality, we assume that data is organized
as follows: the kth agent is provided with Nk patterns, such
that N =

∑L
k=1Nk. For each agent, the first lk patterns are

labeled: Sk = {(xk,1, yk,1), . . . , (xk,lk , yk,lk)}, while the last
uk are unlabeled: Uk = {xk,lk+1, . . . ,xk,lk+uk

}. The local
data sets are non-overlapping, so we have S = ∪Lk=1Sk and
U = ∪Lk=1Uk.

Let Lk ∈ RNk×Nk , k = 1 . . . L, be the Laplacian matrices
computed by each agent using its own data; we are interested
in estimating in a totally decentralized fashion the Laplacian
matrix L calculated with respect to all the N patterns. The
local Laplacian matrices can be always expressed, rearranging
the rows and the columns, as block matrices on the main
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diagonal of L:

L =

L1 ? ?

?
. . . ?

? ? LL

 (18)

The same structure of (18) applies also to matrices D and
K, with Dk and Kk representing the distance matrix and
kernel matrix computed over the local dataset. This particular
structure implies that the sampling set is not random, and
makes non-trivial the problem of completing L solely from
the knowledge of the local matrices. At the opposite, the
idea of exchanging the entire local datasets between nodes
is unfeasible because of the amount of data to share. Instead
of completing in a distributed manner the global Laplacian
matrix, in this paper we considered the alternative approach
of computing the global EDM D first, and then using it to
calculate the Laplacian. This approach has two advantages:

- We can exploit the structure of EDMs to design efficient
algorithms.

- From the global EDM we can compute, in addition to the
Laplacian, the kernel matrix K for all kernel functions K
based on Euclidean distance (e.g. gaussian kernel) [26].

Based on these considerations, we propose a framework for
the distributed estimation of L, which consists in five steps:

1) Patterns exchange: every agent exchanges a fraction p
of the available input data (both labeled and unlabeled)
with its neighbors. This step is necessary so that the
agents can increase the number of known entries in their
local matrices. In order to maximize the diffusion of the
data within the network, this step is iterated n(1)max times;
at every iteration an increasing percentage of shared data
is constituted by pattern received by the neighbors in
previous iterations. A simple strategy to do this consists,
at the iteration n, to choose nmax−n+1

nmax
p patterns from the

local dataset, and n−1
nmax

p patterns received in the previous
n−1 iterations. In order to preserve privacy, this step can
include one of the privacy-preserving strategies showed
in Section II-C.

2) Local EDM computation: each agent computes, using its
original dataset and the data received from its neighbors,
an incomplete approximation D̂k ∈ RN×N of the real
EDM matrix D.

3) Entries exchange: the agents exchange a sample of their
local EDMs D̂k with their neighbors. Again, this step
is iterated n(2)max times using the same rule of step 1.

4) Distributed EDM completion: the agents complete the
estimate D̃ of the global EDM using one of the dis-
tributed algorithms presented in the following sections.

5) Global Laplacian estimation: using D̃ the agents com-
pute the global Laplacian estimate L̃ and the Kernel
matrix estimate K̃.

B. Decentralized block estimation

As stated in the introduction, the first algorithm that we
take into account for the decentralized completion of D is
a modified version of the algorithm named D-LMaFit [32],
[33]. To the best of our knowledge, this is the only existing
algorithm for distributed matrix completion available in the
literature.

Let D̂ be the incomplete global EDM matrix and denote
with I the set of indexes corresponding to its known entries. In
a centralized setting, without taking into account the structure
of distance matrices, and assuming that the rank r is known,
D̃ can be completed by solving the problem:

min
A,B,D̃

∥∥∥AB− D̃
∥∥∥2

F

s. t. D̃ij = D̂ij , ∀(i, j) ∈ I
, (19)

where A ∈ RN×r, B ∈ Rr×N represent a suitable low-rank
factorization of D̃.

In extending problem (19) to a decentralized setting, the al-
gorithm presented in [32] considers a column-wise partitioning
of D̂ over the agents. For simplicity of notation, we suppose
here that this partitioning is such that the kth agent stores
only the columns corresponding to its local dataset. Thus, the
block partitioning has the form D̂ =

[
D̂1, . . . , D̂L

]
, where

D̂k ∈ RN×Nk is the block of the matrix held by the kth agent,
and Ik is the set of indexes of known entries of D̂k. The same
block partition applies also to matrices {B = [B1, . . . ,BL]},
with Bk ∈ Rr×Nk , and D̃ =

[
D̃1, . . . , D̃L

]
, with D̃k ∈

RN×Nk . The matrix A cannot be partitioned, but each agent
stores a local copy Ak to use in computations. The D-LMaFit
algorithm consists in an alternation of matrix factorizations
and inexact average consensus, formalized in the following
steps:

1) Initialization: For each agent, the matrices Ak [0] and
Bk [0] are initialized as random matrices of appropriate
dimensions. Matrix D̃k [0] is initialized as D̃k [0] = D̂k.

2) Update of A: At time n, the kth agent updates its local
copy of the matrix A. If n = 0, the updating rule is:

Ak [1] =

L∑
i=1

CkiAi [0]− α
(
Ak [0]− D̃k [0] BT

k [0]
)
,

(20)
where α is a suitable positive step-size. If n > 0, the up-
dating rule is given in Eq. (B1) at the bottom of the page.
In Eq. (B1), C̃ is a mixing matrix that satisfies some
properties [33]. A suitable choice is C̃ = (1/2)(I + C).

3) Update of B and D̃: At the nth iteration, agent k updates
matrices Bk and D̃k according to:

Ak [n+ 1] = Ak [n]−
L∑

i=1

(
CkiAi [n]− C̃kiAi [n− 1]

)
− α

(
Ak [n]−Ak [n− 1]− D̃k [n]BT

k [n] + D̃k [n− 1]BT
k [n− 1]

)
(B1)
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Bk [n+ 1] = A†k[n+ 1]AT
k [n+ 1] D̃k [n] (21)

D̃k [n+ 1] = Ak [n+ 1] Bk [n+ 1] +

PIk
(
D̂k −Ak [n+ 1] Bk [n+ 1]

)
(22)

where A†k[n + 1] is the Moore-Penrose inverse of
Ak[n+1], and PI (M) : Rn×m → Rn×m is a projection
operator defined by:

PI (M)ij =

{
Mij if (i, j) ∈ I
0 otherwise

. (23)

The algorithm stops when the maximum number of iterations
nEDM

max is reached.
As we stated, D-LMaFit is not specifically designed for

EDM completion. Consequently, it has some important limita-
tions in our context. In particular, the resulting matrix D̃ can
have negative entries and could be non-symmetric; moreover,
it is distributed across the nodes and so, if an agent want
to access to the complete matrix, it has to collect the local
matrices D̃ through all the network. In order to at least satisfy
the constraint that D̃ be an appropriate EDM, we introduce
the following modifications into the original algorithm:

- The updating equation for D̃k is modified by setting to
0 all the negative entries. This projection operator is a
standard approach in non-negative matrix factorization to
enforce non-negativity constraints [42].

- When all the agents gathered the complete matrix D̃, this
is symmetrized as D̃ = D̃+D̃T

2 .

C. Diffusion gradient descent

The second algorithm for distributed EDM completion
proposed in this paper exploits the low-rank factorization
D = κ(VVT) showed in Section II-B. In particular, we
consider the general framework of DA [34], which is a family
of methods for jointly optimizing a sum of cost functions
over a group of agents. The optimization is performed by
interleaving local gradient descent steps with ‘diffusion’ steps,
where neighboring estimates are fused at every node. DA has
been used for a wide range of distributed optimization tasks,
including distributed filtering [43], dictionary learning [14],
and control of connectivity over graphs [44], among others.

To begin with, we can observe that the objective function
in Eq. (13) can be approximated locally by:

Jk(V) =
∥∥∥Ωk ◦

[
D̂k − κ

(
VVT)]∥∥∥2

F
k = 1, . . . , L , (24)

where Ωk is the local auxiliary matrix associated with D̂k.
Hence, we can exploit a DA algorithm to minimize the joint
cost function given by J̃(V) =

∑L
k=1 Jk(V). The diffusion

gradient descent for the distributed completion of an EDM is
defined by an alternation of updating and diffusion equations
in the form of:

1) Initialization: All the agents initialize the local matrices
Vk as random N × r matrices.

2) Update of V: At time n, the kth agent updates the local
matrix Vk using a gradient descent step with respect to

its local cost function:

Ṽk [n+ 1] = Vk[n]− ηk[n]∇Vk
Jk(V) . (25)

where ηk [n] is a positive step-size. It is straightforward
to show that the gradient of the cost function is given
by:

∇Vk
Jk(V) = κ∗

{
Ωk◦

◦
(
κ
(
Vk [n] VT

k [n]
)
− D̂k

)}
Vk [n] ,

(26)

where κ∗(A) = 2 [diag (A1]−A) is the adjoint opera-
tor of κ.

3) Diffusion: The updated matrices are combined according
to the mixing weights C:

Vk [n+ 1] =

L∑
i=1

CkiṼi [n+ 1] . (27)

For a rationale of this approach, and an analysis of its
convergence behavior in the case of convex cost functions, we
refer to any introductory publication on DA [34], [45], [46].
Convergence of a similar family of algorithms in the case of
non-convex cost functions is instead derived in [47]. Com-
pared with the state-of-the-art decentralized block algorithm
presented in the previous section, the diffusion-based approach
has two main advantages. First, it is able to take into account
naturally the properties of EDM matrices. Secondly, at every
step each node has a complete estimate of the overall matrix,
instead of a single column-wise block. Thus, there is no need
of gathering the overall matrix at the end of the optimization
process.

IV. DISTRIBUTED SEMI-SUPERVISED MANIFOLD
REGULARIZATION

In this section, we consider the more general distributed
SSL setting, as illustrated in Fig. 1. We suppose that the
agents in the network have performed a distributed matrix
completion step, using either the algorithm in Section III-B
or the one in Section III-C, so that the estimates D̃, L̃ and K̃
are globally known. For the kth agent, we denote with ŷk the
Nk dimensional vector with elements:

ŷk,i =

{
yk,i if i ∈ {1, . . . , lk}
0 if i ∈ {lk + 1, . . . , lk + uk}

, (28)

and Ĵk the Nk ×N matrix defined by Ĵk =
[
0k Λk 0k

]
,

where Λk is a Nk ×Nk diagonal matrix with elements:

Λk,ii =

{
1 if i ∈ {1, . . . , lk}
0 if i ∈ {lk + 1, . . . , lk + uk}

, (29)

0k is a Nk×
∑

j<kNj null matrix and 0k is a Nk×
∑

j>kNj

null matrix. Using this notation, the optimization problem of
LapRLS can be reformulated in distributed form as:

min
α

L∑
k=1

‖ŷk− ĴkK̃α‖22 + γAα
TK̃α+ γIα

TK̃L̃K̃α . (30)
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TABLE I
PSEUDOCODE OF THE PROPOSED DISTRIBUTED SSL ALGORITHM, AT THE

kTH AGENT.

Input: Labeled Sk and unlabeled Uk training data, number
of nodes L (global), regularization parameters γA, γI
(global)

Output: Optimal vector α∗k
1: for n = 1 to n1max do
2: Select a set of input patterns and share them with the

neighbors Nk, using a privacy-preserving transforma-
tion if needed.

3: Receive patterns from the neighbors.
4: end for
5: Compute the incomplete EDM matrix D̂k.
6: for n = 1 to n2max do
7: Select a set of entries from D̂k and share them with

the neighbors.
8: Receive entries from the neighbors.
9: Update D̂k with the entries received.

10: end for
11: Complete the matrix D̃ using the algorithm presented in

Sec. III-B or in Sec. III-C.
12: Compute the Laplacian matrix L̃ and the kernel matrix

K̃ using D̃.
13: Compute the sum Ĵtot over the network using the DAC

protocol.
14: return α∗k according to Eq. (32).

Denoting with Ĵtot =
∑L

k=1 ĴT
kĴk and ŷtot =

∑L
k=1 ĴT

kŷk, we
can derive the expression for the optimal weights vector α∗:

α∗ =
(
ĴtotK̃ + γAI + γIL̃K̃

)−1
ŷtot . (31)

The particular structure of α∗ implies that the distributed
solution can be decomposed as α∗ =

∑L
k=1α

∗
k, where:

α∗k =
(
ĴtotK̃ + γAI + γIL̃K̃

)−1
ĴT
kŷk . (32)

To compute the local solution α∗k, the kth agent requires
only the knowledge of matrix Ĵtot, which can be computed
with a distributed sum over the network. This is a primitive
operation in most families of networks, including WSNs and
P2P networks. In the WSN case, in particular, this is typically
achieved with the use of a distributed average consensus
protocol (DAC) [35], [36], [41]. DAC, or simply consensus,
is a totally distributed iterative protocol designed to compute
the average of a series of measurements within a network.
Basically, this is an iterative process which, at every time
instant n, updates the current local estimate Γk[n− 1] of Ĵtot
as:

Γk[n] =

L∑
i=1

CkiΓi[n− 1] . (33)

Convergence of Eq. (33) is guaranteed for a wide range of
choices of C. Clearly, the sum can be obtained by post-
multiplying the final estimate by L. For more information,
we refer to [35], [36], [41]. The DAC protocol will be used

TABLE II
DESCRIPTION OF THE DATASETS.

Name Features Size N. Classes |TR| |TST| |U|

2Moons 2 400 2 14 200 186

BCI 117 400 2 14 100 286

G50C 50 550 2 50 186 314

COIL20 1024 1440 20 40 400 1000

COIL2 1024 1440 2 40 400 1000

in the experimental section.
Overall, the distributed LapRLS algorithm can be summa-

rized in five main steps:
1) Distributed Laplacian estimation: this step corresponds

to the process illustrated in Sec. III. It includes the
patterns exchange (with the inclusion of a privacy-
preserving strategy, if needed) and the points exchange
procedures, the distributed EDM completion, and the
computation of L̃ and K̃.

2) Global sum of Ĵtot: in this step the local matrices ĴT
kĴk

are summed up using the DAC protocol.
3) Local training: using the matrix Ĵtot computed in the

previous step, each agent calculate its local solution,
given by:

α∗k =
(
ĴtotK̃ + γAI + γIL̃K̃

)−1
ĴT
kŷk . (34)

4) Global sum of α∗: in this step, using the DAC protocol,
the local vectors α∗k are summed up to compute the
global weights vector.

5) Output estimation: when a new unlabeled pattern x is
available to the network, each agent can initialize a
partial output as:

fk(x) =

Nk∑
i=1

K(x,xk,i)β
∗
k,i , (35)

where β∗k is a Nk-dimensional vector containing the
entries of α∗ corresponding to the patterns belonging
to the kth agent. The global output is then computed as:

f(x) =

L∑
k=1

fk(x) , (36)

which can be obtained efficiently with the use of the
DAC protocol.

A pseudocode of the algorithm, from the point of view of a
single agent, is provided in Table I.

V. EXPERIMENTAL RESULTS

A. Experiments setup

We tested the performance of our proposed algorithm over
five publicly available datasets. In order to get comparable
results with state-of-the-art SSL algorithms, the datasets were
chosen among a variety of benchmarks for SSL. A schematic
overview of their characteristics is given in Tab. II. The
datasets are both synthetic (G50C and 2Moons) and taken
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from real-world examples (BCI and COIL). G50C is a binary
classification task, whose inputs are constructed from over-
lapping 50-dimensional Gaussians [17]. 2Moons is another
artificial dataset, where inputs are arranged in two opposite
‘crescent moon’ shapes, with some overlap [17]. COIL is an
image recognition task comprising 100 objects taken from
different angles [48]. BCI, instead, is a medical task involving
electroencephalography recordings from 400 independent tri-
als [49]. For further information about the datasets, we refer
to [16] for 2Moons, to [15], [49] for BCI, and to [17] for the
rest of the datasets. Additional information can be found in
[15, Chapter 21]. The COIL dataset is used in two different
versions, one with 2 classes (COIL2) and a harder version
with 20 classes (COIL20). In all the cases, input variables are
normalized between −1 and 1 before the experiments.

In our experimental setup we considered a 7-nodes network,
whose topology is kept fixed for all the experiments. The
topology is generated according to the so-called “Erdős-Rényi
model” [50], such that each pair of agents is connected with
a probability c. In particular, in our implementation we set
c = 0.5, while we choose the weights matrix C using the
so-called ‘max-degree’ strategy [41]:

Ckj =


1

d+1 if k ∈ Nj\k
1− dk

d+1 if k = j

0 otherwise
. (37)

This choice ensures both convergence of the DAC protocol
[41] and it satisfies the requirements of the DA framework
[34]. All the experiments are repeated 25 times, to average pos-
sible outliers results due to the randomness in the processes of
exchange and in the initialization of the matrices in the EDM
completion algorithms. Following a standard SSL setting, at
every run data are randomly shuffled and then partitioned in
a labeled training set TR, a test set TST, and an unlabeled
set U, whose cardinalities are reported in Tab. II. In order to
simulate a distributed scenario, both the labeled and unlabeled
training sets are then partitioned uniformly across the nodes.
Since in this paper we are not interested in the analysis of the
communication process over a real network, we implement
a serial version of the code to perform the simulations. All
the experiments are performed using MATLAB R2014a on an
Intel i7-3820 @3.6 GHz and 32 GB of memory. Open-source
MATLAB code for repeating the simulations is available on
the web.1

B. Distributed Laplacian estimation

In this section we compare the performance of the two
strategies for distributed EDM completion illustrated in Sec-
tion III. We analyze the matrix completion error, together with
the overall computational time for the two strategies. Given an
estimate D̃ of D, we define the matrix completion error as:

E(D̃) =

∥∥∥D̃−D
∥∥∥
F

‖D‖F
. (38)

1https://bitbucket.org/robertofierimonte/distributed-semisupervised-code

The first set of experiments consists in comparing the com-
pletion error and the time required by the two algorithms, for
different sizes of the sampling set of D. In our context, the
size of the sampling set depends only on the amount of data
that are exchanged before the algorithm runs. To this end,
we consider the completion error when varying the number
of iterations for both the patterns exchange and the entries
exchange steps, while keeping fixed the exchange fraction p,
as defined in Section III-A. In particular, for all the datasets
we varied the maximum number of iterations n(1)max and n

(2)
max

from 0 to 150, by steps of 10. Results of this experiment are
presented in Fig. 2. The solid red and the solid blue lines
show the performance of Decentralized Block Estimation and
Diffusion Grandient Descent, respectively. Since the value of
the completion error only depends on the input x, the results
for datasets COIL20 and COIL2 are reported together.

The values for the patterns exchange fraction p1 and the
entries exchange fraction p2 are chosen to balance the com-
munication overhead and the size of the sampling set of D. For
both the algorithms, we set the maximum number of iterations
nEDM

max to 1500, and we used a fixed step-size strategy. In partic-
ular for the Decentralized Block Estimation we set α = 0.4,
as suggested in [33], while for the Diffused Gradient Descent,
the optimal values for η are chosen singularly for each dataset
by searching in the interval 10j , j ∈ {−10, . . . ,−3}. These
parameters, together with the values for p1 and p2, are reported
in Tab. III, and are used in all the experiments.

First of all, we see that without a prior exchange of patterns,
the EDM completion error is generally large. Although this is
to be expected, it underlines the importance of having a data-
exchange phase in the beginning of the algorithm. Secondly,
we can see that with the solely exception of the 2Moons
dataset (see Fig. 2a), the novel Diffused Gradient Descent
algorithm achieves better performance when compared to the
Decentralized Block Estimation, in particular when relatively
few information is exchanged before the completion process.
For three out of four datasets, as the number of the exchange
iterations increases, the diffusion strategy is able to converge
rapidly to the real EDM D, while the performance is poorer
for the block partitioning strategy, resulting for datasets BCI
and COIL in a completion error of 19% even for high quantity
of information exchanged (see Fig. 2b and Fig. 2d). Despite
a small variability in the experimental results, we see that
the error obtained after a small number of data exchanges
is generally acceptable (i.e. under 0.1) in all cases. Still, the
block estimation strategy can be a better choice for a small
number of features (such is the case of the 2Moons dataset),
since the combination of the Schoenberg mapping with the
low-rank factorization may result in degraded performance.

When considering the time required by the two algorithms,
which is shown in Fig. 3, we observe that the block partition
strategy requires for datasets 2Moons and G50C less than
half the time required by the diffused strategy, while, as the
number of the features increases, the diffusion strategy tends
to be less computational expensive. In fact, the time required
by both strategies is nearly the same for the dataset BCI,
while for COIL the diffusion strategy is 1.2 times faster. We
remark that the Decentralized Block Estimation requires an
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(c) Dataset: G50C
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(d) Datasets: COIL20\COIL2

Fig. 2. Average EDM completion error of the two strategies on the considered datasets, when varying the number of iterations for the patterns and entries
exchange protocols. The vertical bars represent the standard deviation from the average.

additional step for all the agents to gather the columns-wise
blocks through the network, which has not been taken into
account in calculating the computational time.

C. Distributed semi-supervised manifold regularization

The second experiment analyzes the performance of the
distributed algorithm when compared to a centralized learning
strategy and to a local learning strategy. We compare the
following algorithms:

- Centr-LapRLS: this is the algorithm depicted in Sec.
II-A. It is equivalent to a single agent collecting all the
training data.

- Local-LapRLS: in the local setting, the training set is
distributed across the agents and every agent trains a
LapRLS on its own dataset, without any communication
with other agents. The error is averaged throughout the
nodes.

- Distr-LapRLS: as before, the training set is distributed
within the network, but the agents converge to a central-
ized solution using the strategy detailed in Sec. IV. In

this experiment, the EDM completion is achieved by the
Diffusion Gradient Descent algorithm.

For all the algorithms, we build the Laplacian and the kernel
matrices according to the method detailed in [17], using the
parameters reported in Tab. III. In particular the parameters
for datasets G50C and COIL come from [17], while those for
2Moons and BCI come from [16] and [15], respectively. Lower
values for the exchange iterations in datasets 2Moons and
BCI are chosen to balance the higher values for the exchange
fractions.

The classification error and the computational time for the
three models over the five datasets are reported in Table
IV. Results of the proposed algorithm, Distr-LapRLS, are
highlighted in bold. We can see that Distr-LapRLS is generally
able to match the same performance of the Centr-LapRLS,
both in mean and variance, except for a small decrease
in the G50C dataset. The performance of Local-LapRLS is
noticeably worse than the other two algorithms, since the
local models are built on considerably smaller training sets.
The final classification accuracy varies from one dataset to
the other, however, the results are generally in line with the
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TABLE III
VALUES FOR THE PARAMETERS USED IN THE SIMULATIONS. THE VALUES IN THE FIRST GROUP ARE USED IN THE DISTRIBUTED PROTOCOLS AND IN THE

DIFFUSION GRADIENT DESCENT ALGORITHM. THOSE IN THE SECOND GROUP ARE USED TO BUILD THE LAPLACIAN AND KERNEL MATRICES. IN THE
THIRD GROUP ARE REPORTED THE PARAMETERS USED IN THE PRIVACY-PRESERVING TRANSFORMATIONS.

Dataset p1 [%] n
(1)
max p2 [%] n

(2)
max η γA γI nn σK q t σa σb σQ σC

2Moons 3.5 100 3.5 100 10−3 2−5 4 6 0.035 1 − − − − −
BCI 2.5 100 2.5 100 10−6 10−6 1 5 1 2 104 0 0 1 10−6

G50C 2 150 2.5 150 10−6 10−6 10−2 50 17.5 5 2 · 104 0 1 1 1.1 · 10−6

COIL 2 150 2.5 150 10−7 10−6 1 2 0.6 1 103 0 0 1 10−6
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Fig. 3. Average EDM completion time required by the two strategies on the considered datasets. DGD and DBE are the acronyms for Decentralized Block
Estimation and Diffusion Gradient Descent respectively.

current state-of-the-art in SSL [15], [17].
The computational time required by the distributed algo-

rithm is given by the sum of the time required by both
the exchange protocols, the distributed Laplacian estimation,
the DAC protocol, and the matrix inversion in (32). When
comparing the results with the values for EDM completion
time obtained in the previous experiment, we notice that the
order of magnitude of the time required by Distr-LapRLS is
given by the time necessary to complete the distance matrix.
The final column of Table IV also highlight the main limitation
of our current approach, namely, the time requested from
very large datasets can be prohibitive in certain low-power
applications. Partly, this is due to a simple implementation of
the two optimization strategies, both of which can be improved
by more advanced choices of their internal step-sizes, and
other techniques. Some of these future directions are discussed
in the conclusive section.

D. Privacy preservation
As a final experiment, we include in our algorithm the

two privacy-preserving strategies presented in Sec. II-C. In
particular, we analyze the evolution of the classification error
when varying the ratio m/d from 0.1 to 0.95, i.e. when varying
the dimensionality m of the transformed patterns. In this

experiment we do not consider the 2Moons dataset, because
of its limited number of features.

Since the value of σ in the linear random projection has
no influence on the error of the transformed patterns, we set
σ = 1 for all the datasets. As for the nonlinear transformation,
the values for the parameters are searched inside a grid and
then optimized locally. Possible values for t are searched
in 10i, i = {1, . . . , 5}, while values for the variances are
searched in 10j , j = {−6, . . . , 6}. The optimal values for the
datasets are reported in the third group of Table III.

Results of the experiment are presented in Fig. 4. The clas-
sification error for the linear random projection and nonlinear
transformation are shown with solid red and dashed blue lines,
respectively. In addition, the mean value for Distr-LapRLS
(together with its confidence interval) is reported as a baseline,
shown with a dashed black line.

By observing the results, we can see that when compared to
Distr-LapRLS, the privacy-preserving strategies show different
behaviors depending on the dataset. In particular, for dataset
BCI, the error is nearly the same of Distr-LapRLS, while
it is slightly lower for COIL2 and COIL20, and somewhat
higher for G50C, where it shows a decreasing trend. For all
the datasets, we see that the error achieved using the privacy-
preserving strategies remains inside the limits of Distr-LapRLS
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(b) Dataset: G50C
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(c) Dataset: COIL20
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Fig. 4. Average classification error of the privacy-preserving transformation on the considered datasets when varying the ratio m/d.

error’s confidence interval, denoting how the variability intro-
duced does not have significant influence on the algorithm’s
performance.

We notice that in most cases, we can obtain a compara-
ble or even better performance with respect to the privacy-
free algorithm, with significantly fewer features, leading to a
reduction of the information exchanged and therefore of the
overall computational requirements. For all the datasets, both
the transformations present a non-smooth trend, caused by the
heuristic nature of these methods. Moreover, the error is very
similar between the strategies, suggesting that the use of a
nonlinear transformation, potentially safer than a linear one,
does not influence the performance.

VI. CONCLUSIONS

In this paper, we have proposed a totally decentralized
algorithm for semi-supervised learning in the framework of
MR. The core of our proposal is constituted by a distributed
protocol designed to compute the Laplacian matrix. Our ex-
perimental results show that, in most cases, the performance
of the novel diffusion adaptation-based algorithm for dis-
tributed EDM completion overcome those of the state-of-the-

art column-wise partitioning strategy. Secondly, experiments
show that the distributed LapRLS is competitive with an
ideal centralized LapRLS model trained on the overall dataset,
i.e., an agent solving the global optimization problem of the
algorithm in a centralized fashion.

Although we have focused here on a particular algorithm
belonging to MR, namely Lap-RLS, the framework is easily
applicable to additional ones, including the laplacian Support
Vector Machine (LapSVM) [16], and others. Moreover, exten-
sions beyond MR are possible, i.e. to all the methods that en-
code information in the form of a matrix of pairwise distances,
such as spectral dimensionality reduction, spectral clustering,
and so on. In the case of kernels that directly depend on the dot
product between patterns (e.g. the polynomial one), particular
care must be taken in designing appropriate privacy-preserving
protocols for distributed margin computation [51], an aspect
which is left to future investigations.

Currently, the main limit of our algorithm is the computation
time required by the distributed algorithm for completing the
Laplacian matrix. This is due to a basic implementation of the
two optimization algorithms. In this sense, in future works we
intend to improve the distributed algorithm to achieve better
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TABLE IV
AVERAGE VALUES FOR CLASSIFICATION ERROR AND COMPUTATIONAL

TIME, TOGETHER WITH STANDARD DEVIATION, FOR THE THREE
ALGORITHMS. RESULTS FOR THE PROPOSED ALGORITHM ARE

HIGHLIGHTED IN BOLD.

Dataset Algorithm Error [%] Time [s]

Centr-LapRLS 0.008± 0.001 0.006± 0.015

2Moons Distr-LapRLS 0.01± 0.03 0.875± 0.030

Local-LapRLS 0.41± 0.28 0.000± 0.000

Centr-LapRLS 0.49± 0.04 0.021± 0.012

BCI Distr-LapRLS 0.49± 0.05 3.396± 0.028

Local-LapRLS 0.54± 0.14 0.001± 0.000

Centr-LapRLS 0.07± 0.02 0.101± 0.017

G50C Distr-LapRLS 0.12± 0.10 5.764± 0.066

Local-LapRLS 0.45± 0.06 0.001± 0.000

Centr-LapRLS 0.13± 0.02 1.565± 0.019

COIL20 Distr-LapRLS 0.13± 0.02 195.933± 2.176

Local-LapRLS 0.78± 0.07 0.056± 0.001

Centr-LapRLS 0.10± 0.03 1.556± 0.028

COIL2 Distr-LapRLS 0.10± 0.03 191.478± 0.864

Local-LapRLS 0.43± 0.12 0.055± 0.000

computational performance. Examples of possible modifica-
tions include adaptive strategies for the choice of the step-size,
as well as early stopping protocols.
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