
Distributed Learning of Random Weights
Fuzzy Neural Networks

Roberto Fierimonte, Marco Barbato, Antonello Rosato and Massimo Panella
Department of Information Engineering, Electronics and Telecommunications (DIET)

University of Rome “La Sapienza”
Via Eudossiana 18, 00184 Rome, Italy

Email: roberto.fierimonte@gmail.com; {marco.barbato, antonello.rosato, massimo.panella}@uniroma1.it

Abstract—In this paper, we propose a scalable, decentralized
learning algorithm for Random Weights Fuzzy Neural Net-
works, when training data is distributed through a network
of interconnected computing agents. In this scenario, the aim
is for all the agents to converge to a single model, with the
requirement that only local communications between the agents
are permitted. In this work we assume that all the agents know
the parameters of the antecedents, while the parameters of the
consequents are estimated by using the Alternating Direction
Method of Multipliers strategy. Experimental results show that
the performance of the proposed algorithm is comparable to that
of a centralized model, where all the data is collected by a single
agent before the training process. To this date, this is the first
publication that addressed the problem of training a fuzzy neural
network over a fully decentralized infrastructure.

I. INTRODUCTION

Fuzzy Neural Network (FNNs) are useful tools for the solu-
tion of supervised learning problems, as regression and classifi-
cation, in many real-world applications relevant to physics, en-
gineering, computer science, medicine, bioinformatics, econo-
metrics, and so on. This paper deals with the learning of the
Adaptive Neuro-Fuzzy Inference System (ANFIS) [1], which
is based on a set of Sugeno first-order type rules. ANFIS
networks are being widely used in many applications, such
as rule-based process control, pattern recognition, function
approximation, etc.

The classical training of ANFIS networks addresses two
main problems: estimation of numerical parameters of an-
tecedents and consequents for each fuzzy rule; regularization
of the network complexity (i.e., estimation of the optimal
number of rules) with the aim of maximizing the generalization
capability of the FNN. Usually, ANFIS rules are determined
by means of numerical datasets rather than linguistic rules
provided by human experts. Such a process is commonly
carried out by clustering the available data in the input or
output space only or, more recently, by using techniques
applied into the joint input-output space [2].

While the literature is plenty of training algorithms pro-
posed in the last 25 years for FNNs, included ANFIS, regard-
ing the classical case of datasets collected in a centralized com-
puting node where the network architecture is implemented, no
considerable contributions have been proposed so far regarding
the case of distributed datasets. Precisely, we do not refer
to the scaling of learning algorithms on a parallel/distributed
computing architecture. Conversely, we are focusing on the
problem of a set of agents (or nodes) distributed in the space,
each with its own capability of computing and communicating,
and having a local dataset acquired by a set associated sensors.

Some examples in this regard are wireless sensor networks
(WSN) [3], [4], swarm robots, trading systems on local finan-
cial markets and, more in general, mobile devices in pervasive
computing applications [5].

This is an emerging scenario in the context of big data
computing, where data cannot be collected in a centralized
node or be transferred to all agents through the communication
network. However, by means of a constrained amount of
communication with the local neighborhood, each agent must
be capable to solve the general regression problem represented
by the complete dataset but using the local dataset only. For
instance, a widely adopted approach to this problem is the
well-known consensus strategy [6], by which all nodes try to
converge to an average single model.

Several options are possible to the distributed learning
of FNNs based on the ANFIS paradigm. A straightforward
approach can be based on the application of the rules’ syn-
thesis, which should be based on distributed fuzzy clustering
and distributed least-squares estimation/regularization. How-
ever, at this moment there are no consolidated approaches to
distributed fuzzy clustering and this matter may be focused in
future research works.

Alternatively, in this paper we propose a novel approach
to solve the distributed learning problem by reformulating the
ANFIS model as a Random Weights Fuzzy Neural Network
(RWFNN). A RWFNN is a FNN based on the ANFIS archi-
tecture, in which the parameters of the membership functions
are randomly selected instead of being estimated during the
learning process [7]. It was proved that, if the parameters of the
membership functions are kept fixed and only the consequent
parameters are tuned, the resulting model is equivalent to
a functional-link network, where the membership functions
represent the functional expansion [1].

Following this approach, the learning of a RWFNN can be
achieved by using well-known results of distributed learning
methods, whose effectiveness has been already ascertained
when applied to other types of neural networks and parametric
models, as in the case of Random Vector Functional Links
(RVFL) neural networks [8], [9]. Precisely, we will propose
a novel approach where the RWFNN model is estimated
through a network of interconnected computing agents and we
will prove that the performance of the proposed algorithm is
comparable to that of a centralized model, where all the data
is collected by a single agent before of the training process.

The rest of the paper is organized as follows. In Sect. II we
introduce the structure of RWFNNs. In Sect. III we formulate

the problem of training a RWFNN over a network of agents,
and we describe a fully decentralized learning algorithm for
this purpose. In Sect. IV we present the experimental re-
sults obtained through numerical simulations on well-known
datasets. Finally, in Sect. V we summarize our proposal and
we discuss future works.

II. RANDOM WEIGHTS FUZZY NEURAL NETWORKS

In this Section we introduce the RWFNN model and we
describe its architecture. We show that the problem of training
a RWFNN can be formulated as a Regularized Least Squares
problem. A RWFNN is constituted by 5 feed forward layers,
each layer is in turn constituted by a set of nodes and each
node is associated with a fuzzy rule. Each node performs a
particular operation on the signals coming from the previous
layer, and sends the result of the calculation to the nodes in
the next layer. There are no connections between nodes in the
same layer.

Let us consider the problem of estimating a scalar output
y ∈ R from a d-dimensional input x = [x1, . . . , xd]

T. Several
alternatives are possible for the fuzzification of crisp inputs,
the composition of input membership functions (MFs), and the
way rule outputs are combined [10]. Let m be the predefined
number of rules of the RWFNN network; usually, the structure
of the fuzzy inference system can be summarized as follows.

• Layer 1. Every node i in this layer, i = 1 . . .m, is
associated with an input MF µ(i,j)(xj ,α) operating
on the jth dimension of the input vector x for the
ith rule. The values for the parameters of the the
antecedents α are chosen are the beginning or the
learning process from a fixed probability distribution,
which is independent on the training data.

• Layer 2. Every node in the second layer corresponds
to an if-then rule of the FIS. If the adopted operator
for the logical AND is the algebraic product, then the
output of the ith node is:

wi(x) =

d∏
j=1

µ(i,j)(xj), i = 1 . . .m. (1)

• Layer 3. Normalization:

wi(x) =
wi(x)∑m
h=1 wh(x)

, i = 1 . . .m. (2)

• Layer 4. Local output of the ith rule:

f̃i(x) = wi(x)(β
T
i x

+), i = 1 . . .m, (3)

where βi is the (d + 1)-dimensional vector given by
βi = [β(i,0), . . . , β(i,d)]

T and x+ = [1,x]T.

• Layer 5. This layer is constituted by a single node
that computes overall output ŷ as the sum of all the
normalized firing strengths:

ŷ =

m∑
i=1

f̃i . (4)

Let T = {(x1, y1), . . . , (xn, yn)} be the set of data
available for the training phase, and denote with x(r,j) the

jth component of the rth input vector. We define the hidden
matrix H =

[
H1, . . . , Hm

]
, where

Hi =


wi wix(1,1) · · · wix(1,d)
wi wix(2,1) · · · wix(2,d)
...

...
. . .

...
wi wix(n,1) · · · wix(n,d)

 , i = 1 . . .m. (5)

and the output vector y = [y1, . . . , yn]
T. Rearranging the

parameters β in the form:

β = [β(1,0) . . .β(1,d)β(2,0) . . .β(2,d) . . .β(m,0) . . .β(m,d)]
T,
(6)

the optimization problem for training a RWFNN can be
reformulated as a Least-Squares (LS) problem:

min
β∈Rp

1

2
‖y −Hβ‖22 , (7)

where ‖·‖2 is the l2 norm and p = m(d+1). The formulation in
(7) may suffer of numerical instability due to the possible small
values of wi, additionally, the optimal solution is undetermined
if n < p. For this reason, we modify the optimization problem
by setting it in the form of a Regularized Least-Squares (RLS)
problem:

min
β∈Rp

1

2
‖y −Hβ‖22 +

λ

2
‖β‖22 (8)

where λ > 0 is the regularization factor. The new problem (8)
is strictly convex, and then it has a unique solution that can
be obtained in closed form as:

β∗ =
(
HTH+ λI

)−1
HTy . (9)

III. DISTRIBUTED LEARNING FOR RWFNN

A. Formulation of the problem

When training a RWFNN in a distributed setting, we
consider the dataset T distributed over a network of L inter-
connected agents [3], [8], [11]. The network of agents can be
modeled as a directed graph G(V, E), where V = {1, . . . , L}
is the set of the agents, and E is the set of the edges. The
connectivity of the graph is fixed and known a priori and
can be formalized as a L × L weights matrix W, where
Wij 6= 0 if and only if agents i and j are connected. A
possible strategy to choose these weights will be discussed in
the following. In this paper, we focus on the simplest case that
represents connected and undirected topologies. We impose
three additional constraints in the design of our algorithm:

• no agent is allowed to coordinate the training process;

• agents are not allowed to exchange any data pattern;

• only local communication between connected agents
is possible.

These constraints are not restrictive and make our proposal
suitable to be employed in different applications. Let Tk =
{(x1, y1), . . . , (xnk

, ynk
)} the training set available at the kth

agent, such that ∪Lk=1Tk = T . In this case, the optimization
problem in (8) can be reformulated in a distributed fashion as:

β∗ = argmin
β∈Rp

1

2

(
L∑
k=1

‖yk −Hkβk‖
2
2

)
+
λ

2
‖β‖22 , (10)

where Hk and yk are the hidden matrix and the output vector
computed over the training set Tk.

B. ADMM-based training of RWFNN

The proposed algorithm to train a RWFNN over a network
of agents is based on the well-known Alternating Direction
Method of Multipliers (ADMM) [12]. In particular, we follow
the derivation for a distributed Least-Squares problem. As the
first step, we rewrite the problem in (10) introducing a global
variable z ∈ Rp, and forcing the local variables βk to be equal
at convergence. The new problem has the form of:

β∗ = argmin
z,β1,...,βL∈Rp

1

2

(
L∑
k=1

‖yk −Hkβk‖
2
2

)
+
λ

2
‖z‖22

subject toβk = z, ∀k = 1, . . . L .

(11)

Then we construct the augmented Lagrangian for the new
problem:

L =
1

2

(
L∑
k=1

‖yk −Hkβk‖
2
2

)
+
λ

2
‖z‖22

+

L∑
k=1

tT
k (βk − z) +

ρ

2

L∑
k=1

‖βk − z‖22 ,

(12)

where tk, k = 1, . . . , L are the Lagrange multipliers and
ρ > 0 is a penalty parameter. ADMM solves the problem
in (11) iteratively. Each iteration of the algorithm consists in
alternating a minimization step for the variables βk and z
with an update step for the Lagrange multipliers tk. In our
application, this steps can be obtained in closed form:

βk[n+ 1] =
(
HT
kHk + ρI

)−1 (
HT
kyk − tk[n] + ρz[n]

)
,

(13)

z[n+ 1] =
ρβ + t

λ/L+ ρ
, (14)

t[n+ 1] = t[n] + ρ (βk[n+ 1]− z[n+ 1]) , (15)

where β and t are the averages computed over βk[n + 1]
and tk[n + 1], respectively. These averages can be computed
over the network using the Distributed Average Consensus
(DAC) protocol [4] or a push-sum protocol [13] or a number of
alternative techniques dependent on the network’s architecture.

C. Early stopping

The convergence behavior of the algorithm at the nth
iteration can be studied for all the agents by analyzing the
‘primal residual’ rk[n] and the ‘dual residual’ s[n], defined
by:

rk[n] = βk[n]− z[n] , (16)
s[n] = −ρ (z[n]− z[n− 1]) . (17)

A stopping criterion for the algorithm consists in verifying if
for all the agents, the norms of the residuals are less than two

TABLE I. PSEUDOCODE OF THE PROPOSED DISTRIBUTED ALGORITHM
AT THE kTH AGENT

Input: Training set Tk, number of nodes L (global), regular-
ization parameters λ, ρ (global), absolute εabs and relative
εrel tolerances, maximum number of iterations Nmax

Output: Optimal vector β∗k
1: Generate the parameters of the membership functions, in

accordance with the other L− 1 agents.
2: Initialize tk[0] = 0, z[0] = 0.
3: for n = 0 to Nmax do
4: Compute βk[n] according to Eq. (13).
5: Compute β and t using the DAC protocol.
6: Compute z[n+ 1] according to Eq. (14).
7: Update tk[n+ 1] according to Eq. (15).
8: Check the stopping criterion.
9: end for

10: return z[n+ 1]

thresholds:

‖rk[n]‖2 < εprimal(k) , (18)
‖s[n]‖2 < εdual . (19)

A possible strategy for choosing the values of the thresholds
is given by [12]:

εprimal(k) =
√
Lεabs + εrel max{‖βk[n]‖2 , z[n]} (20)

εdual =
√
Lεabs + εrel max

k
{‖tk‖2} (21)

where εabs and εrel are the values for the absolute and relative
tolerance respectively. If the stopping criterion is not satisfied
after a maximum number of iterations Nmax, the algorithm
is terminated. The pseudocode for the proposed algorithm at
agent k is given in Table I.

IV. EXPERIMENTAL RESULTS

A. Description of datasets

To validate our proposal we employ three widespread
datasets extensively used for regression purposes, available
from the UCI Machine Learning Repository1. The datasets
were carefully chosen to represent different applicative do-
mains and, at the same time, they reveal a varied composition
in terms of number of instances and features. A brief summary
of the datasets is given in Table II; below we provide a more
detailed description for each of them.

• Airfoil - This is a NASA dataset [14] composed
of different size NACA 0012 airfoils subject to
aero-dynamical and acoustical measurements. The at-
tributes represent the stream velocity, the angle of
attack and the features of the airfoil. The desired
output is the sound pressure level.

• Critical Assessment of protein Structure Prediction
(CASP) - This dataset describes the physicochemical
properties of a Protein Tertiary Structure, using values
taken from the CASP experiments2. The number of

1http://archive.ics.uci.edu/ml
2http://predictioncenter.org

TABLE II. GENERAL DESCRIPTION OF THE DATASETS.

Dataset name Features Instances Desired Output

Airfoil 5 1503 Sound pressure level
CASP 9 45730 RMSD
CCPP 4 9568 Electrical energy

instances corresponds to the amount of measured
decoys, while the attributes pertain to their inner
structures and exposed areas. The output is the Root
Mean Square Deviation (RMSD) of the residuals.

• Combined Cycle Power Plant (CCPP) - This dataset
consists of a number of measurements collected from
a power plant over a six-years time interval [15]. The
attributes refer to four different ambient variables,
while the output is the predicted electrical energy
output of the power plant. Interestingly enough, the
measures are collected using a sensor network.

In all cases, we normalize the input variables between −1 and
+1 before the experiments. We evaluate the accuracy of all
the models by applying a 10-fold cross validation procedure
on the datasets. The procedure is repeated 10 times by varying
the initialization of the weights of the models and the topology
of the network. The final values for the prediction error and
the training time are averaged over the total 100 repetitions.

B. Implementation

We have implemented the proposed algorithm in an open
source MATLAB toolbox3. In this paper we are not concerned
about investigating the effects of the communication process
over a real network, hence we provide a serial version of the
algorithm. All the simulations were performed using MATLAB
2015a running on an Intel i7 @ 3.40 GHz processor and 16
GB of memory. In our experiments we compare the following
models:

• ANFIS: this is an ANFIS network trained using
the MATLAB Fuzzy Logic Toolbox, according to
the well-known hybrid algorithm described in [1]. It
provides a benchmark to assess the performance of
the RWFNN model in the classical single agent case.
In our experiments we set a maximum of 100 epochs
for the training algorithm.

• C-RWFNN: this is the algorithm depicted in Sect. II.
It corresponds to a single agent collecting all the data
before the training process, and it can be interpreted
as a baseline for the decentralized approach.

• ADMM-RWFNN: in this case, the training set is
distributed across the agents, and the agents run the
algorithm described in Sect. III. In all the simulations
we set Nmax = 600, εrel = εabs = 10−3 and ρ = 1.

• L-RWFNN: as before, the training data is distributed
through the network. Every agent trains a RWFNN

3https://bitbucket.org/robertofierimonte/code-distributed-rwfnn

TABLE III. OPTIMAL VALUES FOR THE REGULARIZATION PARAMETER
λ.

Dataset name λ

Airfoil 10−1

CASP 10−3

CCPP 10−2

using its own data points, but no information is
exchanged. The value for the test error is averaged
over the agents.

For all the datasets we construct the FIS by defining two
linguistic labels for each feature and we use Gaussian mem-
bership functions given by:

µ(x; c, σ) = exp
{−(x− c)2

2σ2

}
, (22)

where the mean c is extracted from the uniform distribution
over the interval [−1,+1] and the standard deviation σ is
extracted from the uniform distribution over [0, 2]. The same
FIS is used as the starting point to train the ANFIS model. The
optimal value for the regularization parameter λ is obtained
by running 5 runs of 5-fold inner cross validation of C-
RWFNN on the training data only. We search the value for
the parameter in the discrete exponential interval 10j , j ∈
{−3,−2,−1, 0, 1, 2}, and we share the optimal value with
ADMM-RWFNN and L-RWFNN. The chosen values of λ are
showed in Table III.

C. Results and discussion

The first set of experiments consists in assessing the per-
formance of C-RWFNN when compared to ANFIS. The aim
of this comparison is to show that the considered architecture
is able to match the performance of well-known and assessed
fuzzy systems. We evaluate the accuracy of all the models
using the Normalized Root Mean-Squared Error (NRMSE),
defined by:

NRMSE =

√∑n
i=1(ŷi − yi)2

nσ̂y
, (23)

where σ̂y is the estimated variance of {y1, . . . , yn}. The
results of this set of experiments are shown in Table IV.

We can see that in all cases, C-RWFNN achieves only
a slightly higher error when compared to ANFIS, ranging
from an additional 0.03 for the CASP dataset to 0.04 for
the Airfoil dataset, and resulting in approximately the same
values for the CCPP dataset. On the opposite, a comparison
of the computational time required by the two models shows
a high disproportion in favor of C-RWFNN, which requires
an amount of time approximately 4 orders of magnitude lower
with respect to ANFIS. An analysis of this results suggests
that when the structure of the FIS is fixed, a fine tuning of
the membership functions’ parameters leads to an extremely
high growth in the computational complexity of the model,
which is not adequately compensated by the improvement in
the performance.

TABLE IV. AVERAGE VALUES FOR TEST ERROR AND COMPUTATIONAL
TIME, TOGETHER WITH STANDARD DEVIATION, FOR THE CENTRALIZED

MODELS. RESULTS FOR C-RWFNN ARE HIGHLIGHTED IN BOLD.

Dataset Algorithm Test NRMSE Training Time [s]

Airfoil
C-RWFNN 0.253± 0.021 0.04± 0.01

ANFIS 0.215± 0.01 70.67± 26.72

CASP
C-RWFNN 0.147± 0.040 85.41± 29.19

ANFIS 0.117± 0.003 2742.13± 956.22

CCPP
C-RWFNN 0.071± 0.013 0.06± 0.02

ANFIS 0.071± 0.01 70.83± 5.75

A second set of experiments is to show the accuracy and the
computational time of the proposed algorithm when varying
the number of agents in the network from L = 5 to L = 25
by steps of 5. In this experiment we construct the network
according to the so-called ‘Erdős−Rényi model’ [16], such that
every pair of agents has a 25% probability to be connected.
The only constraint is that the overall network is connected.
Additionally, we choose the weights W using the Metropolis-
Hastings strategy [17]:

Wkj =


1

max{dk, dj}+ 1
k 6= j, {k, j} ∈ E

1−
∑
j∈Nk

1

max{dk, dj}+ 1
k = j

0 k 6= j, {k, j} /∈ E
(24)

where Nk is the set of agents’ indexes directly connected to
agent k and dk = |Nk\k|, with | · | denoting the cardinality
of a set. This choice of the weights ensures convergence for
the DAC protocol [18], and therefore for ADMM-RWFNN.
The results for this experiment are showed in Fig. 1, while
a summary of the results for L = 25 is given in Table V.
The panels on the left show the trend of the test error, while
the panels on the right show the trend of the training time.
As mentioned before, the test error for L-RWFNN is averaged
over the agents.

We start our discussion observing that in all cases, L-
RWFNN fails in tracking the performance of the centralized
model as the number of agents increases. Particularly poor
results are obtained on Airfoil (Fig. 1a) and CASP (Fig. 1c)
datasets, with an additional error of 0.4 and 0.07, respectively.
It is interesting to note that the evolution of the error, when
varying the number of agents, results in different trends for the
three datasets: in fact for the CASP dataset the gap between L-
RWFNN and C-RWFNN remains approximately constant for
any size of the network. Additionally we highlight that the
local model suffers of high variance, due to the different results
achieved by the agents.

The second important aspect to highlight is that ADMM-
RWFNN is able to track the error of C-RWFNN regardless
of the number of agents in the network. In particular the two
models have the same performance on the Airfoil and CCPP
datasets, while the distributed algorithm achieves a slightly
lower error on the CASP dataset. The unusually high variance
achieved by ADMM-RWFNN on the CCPP dataset (Fig. 1e) is

TABLE V. AVERAGE VALUES FOR THE TEST ERROR AND
COMPUTATIONAL TIME, TOGETHER WITH STANDARD DEVIATION, FOR

C-RWFNN, L-RWFNN AND ADMM-RWFNN ON A 25-AGENT
NETWORK. TRAINING TIME FOR L-RWFN AND ADMM-RWFNN IS

AVERAGED OVER THE NODES. RESULTS FOR THE PROPOSED ALGORITHM
ARE HIGHLIGHTED IN BOLD.

Dataset Algorithm Test NRMSE Training time [s]

Airfoil
C-RWFNN 0.253± 0.021 0.04± 0.01

L-RWFNN (25 nodes) 0.645± 0.158 0.02± 0.01

ADMM-RWFNN (25 nodes) 0.254± 0.021 0.45± 0.10

CASP
C-RWFNN 0.147± 0.040 85.41± 29.19

L-RWFNN (25 nodes) 0.219± 0.093 7.56± 1.86

ADMM-RWFNN (25 nodes) 0.127± 0.02 26.96± 6.99

CCPP
C-RWFNN 0.071± 0.013 0.06± 0.02

L-RWFNN (25 nodes) 0.088± 0.024 0.05± 0.01

ADMM-RWFNN (25 nodes) 0.072± 0.014 0.1± 0.03

a consequence to the intrinsic variability of C-RWFNN model,
rather than being due to a poor performance of the distributed
algorithm.

When considering the computational time required by the
three models, there are few considerations to be made. We
start with noticing that for all the datasets, the training time
required by L-RWFNN is lower than the training time required
by C-RWFNN, and it remains approximately constant for any
size of the network. This an obvious consequence of the fact
that a smaller dataset is used for the training phase. On the
opposite the training time required by ADMM-RWFNN is
strongly dependent on the size of the network and, in general, it
shows a decreasing trend as the number of agents increases. It
is also interesting to notice how, for a large dataset like CASP,
ADMM-RWFNN is always faster than C-RWFNN, resulting
in a reduction in training time of 60% when L = 25.

Overall, the experimental results show that the effectiveness
of ADMM-RWFNN over C-RWFNN increases according to
the size of the network, alongside with the enlargement of the
dataset, making our proposal particularly interesting for big
data and large scale applications.

V. CONCLUSIONS

In this paper, we have proposed a completely decentralized
algorithm for training a FNN architecture when the training
data is distributed over a network of computing agents. To
tackle this problem, we have considered RWFNNs as a par-
ticular instance of ANFIS networks and, by using an ADMM-
based distributed learning technique, we have proposed a novel
algorithm to estimate the RWFNN model through a network
of interconnected agents.

The numerical results obtained by experimental simulations
on well-known datasets prove that the performance of the
proposed algorithm is comparable to that of a centralized
model, where all the data is collected by a single agent before
the training process.

In future works, we aim at extending the distributed
approach to different and more complex FNN architectures,

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of agents

N
o
rm

al
iz

ed
 R

o
o
t−

M
ea

n
−

S
q
u
ar

e
E

rr
o
r

(N
R

M
S

E
)

C−RWFNN

ADMM−RWFNN

L−RWFNN

(a) Test error (Dataset Airfoil)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of agents

T
ra

in
in

g
 t

im
e

[s
]

C−RWFNN

ADMM−RWFNN

L−RWFNN

(b) Training time (Dataset Airfoil)

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of agents

N
o
rm

al
iz

ed
 R

o
o
t−

M
ea

n
−

S
q
u
ar

e
E

rr
o
r

(N
R

M
S

E
)

C−RWFNN

ADMM−RWFNN

L−RWFNN

(c) Test error (Dataset CASP)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Number of agents

T
ra

in
in

g
 t

im
e

[s
]

C−RWFNN

ADMM−RWFNN

L−RWFNN

(d) Training time (Dataset CASP)

0 5 10 15 20 25 30
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Number of agents

N
o
rm

al
iz

ed
 R

o
o
t−

M
ea

n
−

S
q
u
ar

e
E

rr
o
r

(N
R

M
S

E
)

C−RWFNN

ADMM−RWFNN

L−RWFNN

(e) Test error (Dataset CCPP)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of agents

T
ra

in
in

g
 t

im
e

[s
]

C−RWFNN

ADMM−RWFNN

L−RWFNN

(f) Training time (Dataset CCPP)

Fig. 1. Performance of ADMM-RWFNN and L-RWFNN, compared to C-RWFNN, for different number of agents. The panels on the left show the test error,
while the panels on the right show the training time. Vertical bars represent the standard deviation from the mean value. Lines for ADMM-RWFNN are slightly
shifted to increase readability.

supported by the latest advances in non-convex optimization
frameworks over networks [19], [20] and distributed clustering
techniques for rules’ synthesis by numerical datasets [21].

REFERENCES

[1] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3,
pp. 665–685, 1993.

[2] M. Panella and A. S. Gallo, “An input-output clustering approach to
the synthesis of ANFIS networks,” IEEE Trans. Fuzzy Syst., vol. 13,
pp. 69–81, 2005.

[3] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23,
no. 4, pp. 56–69, 2006.

[4] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Distributed detection
and estimation in wireless sensor networks,” in E-Reference Signal
Processing, R. Chellapa and S. Theodoridis, Eds. Elsevier, 2013, pp.
329–408.

[5] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[6] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[7] Y.-L. He, X.-Z. Wang, and J. Z. Huang, “Fuzzy nonlinear regression
analysis using a random weight network,” Information Sciences, 2016,
in press.

[8] S. Scardapane, D. Wang, M. Panella, and A. Uncini, “Distributed
Learning with Random Vector Functional-Link Networks,” Information
Sciences, vol. 301, pp. 271–284, 2015.

[9] S. Scardapane, R. Fierimonte, D. Wang, M. Panella, and A. Uncini,
“Distributed music classification using random vector functional-link
nets,” in Neural Networks (IJCNN), 2015 International Joint Conference
on. IEEE, 2015, pp. 1–8.

[10] J.-S. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: a
Computational Approach to Learning and Machine Intelligence. Upper
Saddle River, NJ, USA: Prentice Hall, 1997.

[11] S. Scardapane, D. Wang, and M. Panella, “A decentralized training
algorithm for echo state networks in distributed big data applications,”
Neural Networks, 2015.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[13] C. Hensel and H. Dutta, “Gadget svm: a gossip-based sub-gradient
svm solver,” in International Conference on Machine Learning (ICML),
Numerical Mathematics in Machine Learning Workshop, 2009.

[14] T. F. Brooks, D. S. Pope, and M. A. Marcolini, Airfoil self-noise and
prediction. National Aeronautics and Space Administration, Office of
Management, Scientific and Technical Information Division, 1989, vol.
1218.

[15] P. Tüfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”
International Journal of Electrical Power & Energy Systems, vol. 60,
pp. 126–140, 2014.

[16] M. Newman, Networks: an introduction. Oxford University Press,
2010.

[17] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” Signal
Processing, IEEE Transactions on, vol. 56, no. 7, pp. 3122–3136, 2008.

[18] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[19] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” Automatic
Control, IEEE Transactions on, vol. 58, no. 2, pp. 391–405, 2013.

[20] P. Di Lorenzo and G. Scutari, “NEXT: In-Network Nonconvex Opti-
mization,” IEEE Transactions on Signal and Information Processing
over Networks, 2016, in press.

[21] A. Rosato, R. Altilio, and M. Panella, Recent Advances on Distributed
Unsupervised Learning, ser. Smart Innovation, Systems and Technolo-

gies. Springer International Publishing, 2016, in press.

