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Abstract
Powerful generative models, particularly in natural language modelling, are commonly
trained by maximizing a variational lower bound on the data log likelihood. These mod-
els often suffer from poor use of their latent variable, with ad-hoc annealing factors used
to encourage retention of information in the latent variable. We discuss an alternative and
general approach to latent variable modelling, based on an objective that encourages a perfect
reconstruction by tying a stochastic autoencoder with a variational autoencoder (VAE). This
ensures by design that the latent variable captures information about the observations, whilst
retaining the ability to generate well. Interestingly, although our model is fundamentally
different to a VAE, the lower bound attained is identical to the standard VAE bound but with
the addition of a simple pre-factor; thus, providing a formal interpretation of the commonly
used, ad-hoc pre-factors in training VAEs.

Keywords Generative modelling · Latent variable modelling · Variational autoencoders ·
Variational inference · Natural language processing

1 Introduction

Generative latent variable models are probabilistic models of observed data x of the form
p(x, z) = p(x |z)p(z), where z is the latent variable. Thesemodels arewidespread inmachine
learning and statistics. They are useful both because of their ability to generate new data
and because the posterior p(z|x) provides insight into the low dimensional representation z
corresponding to the high dimensional observation x . These latent z values are then often
used in downstream tasks, such as topic modelling (Dieng et al. 2017), multi-modal language
modeling (Kiros et al. 2014), and image captioning (Mansimov et al. 2016; Pu et al. 2016).
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Fig. 1 aStandard generativemodel.bStochastic autoencoderwith tied observations. cEquivalent tied stochas-
tic autoencoder with AutoGen parameterisation

Latent variable models, particularly in the form of Variational Autoencoders (VAEs)
(Kingma andWelling 2014; Rezende et al. 2014), have been successfully employed in natural
language modelling tasks using varied architectures for both the encoder and the decoder
(Bowman et al. 2016; Dieng et al. 2017; Semeniuta et al. 2017; Yang et al. 2017; Shah
et al. 2017). However, an architecture that is able to effectively capture meaningful semantic
information into its latent variables is yet to be discovered.

A VAE approach to language modelling was given by Bowman et al. (2016), the graphical
model for which is shown in Fig. 1a. This forms a generative model p(x |z)p(z) of sentence
x , based on latent variable z.

Since the integral p(x) = ∫
p(x |z)p(z)dz is typically intractable, a common approach is

to maximize the Evidence Lower Bound (ELBO) on the log likelihood,

log p(x) ≥ 〈log p(x |z)〉q(z|x) − DKL[q(z|x)||p(z)] (1)

where 〈·〉q(z|x) is the expectation with respect to the variational distribution q(z|x), and
DKL[·||·] represents the Kullback–Leibler (KL) divergence. Summing over all datapoints x
gives a lower bound on the likelihood of the full dataset.

In language modelling, typically both the generative model (decoder) p(x |z), and vari-
ational distribution (encoder) q(z|x), are parameterised using an LSTM recurrent neural
network—see for example Bowman et al. (2016). This autoregressive generative model is so
powerful that the maximum ELBO is achieved without making appreciable use of the latent
variable in the model. Indeed, if trained using the SGVB algorithm (Kingma and Welling
2014), the model learns to ignore the latent representation and effectively relies solely on the
decoder to generate good sentences. This is evidenced by the KL term in the objective func-
tion converging to zero, indicating that the approximate posterior distribution of the latent
variable is trivially converging to its prior distribution.

The dependency between what is represented by latent variables, and the capacity of the
decoding distribution (i.e., its ability to model the data without using the latent) is a general
phenomenon. Yang et al. (2017) used a lower capacity dilated CNN decoder to generate
sentences, preventing the KL term going to zero. Gulrajani et al. (2017) and Higgins et al.
(2017) have discussed this in the context of image processing. A clear explanation of this
phenomenon in terms of Bit-Back Coding is given in Chen et al. (2017).

Amechanism to avoid themodel ignoring the latent entirely,while allowing a high capacity
decoder is discussed in Bowman et al. (2016) and uses an alternative training procedure
called “KL annealing”—slowly turning on the KL term in the ELBO during training. KL
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annealing allows the model to use its latent variable to some degree by forcing the model
into a local maximum of its objective function. Modifying the training procedure in this way
to preferentially obtain local maxima suggests that the objective function used in Bowman
et al. (2016) may not be ideal for modelling language in such a way as to create a model that
leverages its latent variables.

2 High-fidelity latent variable modelling with AutoGen

We propose a new generative latent-variable model motivated by the autoencoder frame-
work (Hinton and Zemel 1994; Hinton and Salakhutdinov 2006). Autoencoders are trained
to reconstruct data through a low-dimensional bottleneck layer, and as a result, construct a
dimensionally-reduced representation from which the data can be reconstructed. By encour-
aging reconstruction in our model, we force the latent variable to represent the input data,
overcoming the issues faced by VAEs (Bowman et al. 2016) where the latent variable is
ignored, as discussed in Sect. 1.

To autoencode in a probabilistic model, we start by considering a ‘stochastic autoencoder’
(SAE) in which we would need to maximize the likelihood of a reconstruction:

pSAE(x ′ = xn |x = xn) =
∫

pSAE(x ′ = xn |z) pSAE(z|x = xn) dz (2)

where x ′ represents the reconstruction and the training data is denoted by {xn}. Maximising
this likelihood would encourage high-fidelity reconstruction from the stochastic embedding
z by tying the input data x and the output x ′, much like an autoencoder. The associated
graphical model is shown in Fig. 1b.

However, it is not immediately clear how to train such a model—constructing a lower
bound on the likelihood using variational methods common in the VAE literature will give
rise to an intractable p(x) term. This SAE would also not allow generation from a prior
distribution, as in the case of VAEs. In order to leverage both prior generation and high-
fidelity reconstruction from the latent variable, we propose to maximize the likelihood of a
SAE and a VAE under a set of assumptions that tie the two models together:

LAutoGen =
∑

n

log pVAE(x = xn)︸ ︷︷ ︸
generation

+ log pSAE(x ′ = xn |x = xn)︸ ︷︷ ︸
reconstruction

(3)

The reconstruction term is given in Eq. 2, while we can write the generative term as

pVAE(x = xn) =
∫

pVAE(x = xn |z) pVAE(z) dz (4)

Crucially, maximizing LAutoGen does not correspond to maximizing the log likelihood of
the data as in the case of a VAE, nor would a lower bound onLAutoGen correspond to the VAE
ELBO (Eq. 1). Instead, we will see that LAutoGen represents the log likelihood of a different
model that combines both VAEs and SAEs.

As yet, we have not specified the relationship between the two terms in LAutoGen, Eqs. 2
and 4. Firstly, we assume that the generative model pVAE(x = xn |z) in the VAE is the same
as the reconstruction model pSAE(x ′ = xn |z) in the SAE, and that the two models share a
prior: pSAE(z) = pVAE(z). Under this equality assumption, it makes sense to denote these
distributions identically as: p(x = xn |z) and p(z), respectively. Secondly, we assume that
the encoding and decoding distributions in the stochastic autoencoder are symmetric. Using
Bayes’ rule, we write these assumptions as
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pSAE(z|x = xn)
sym. assump.= pSAE(x = xn |z) pSAE(z)

pSAE(x = xn)
(5)

eq. assump.= p(x = xn |z) p(z)
p(x = xn)

(6)

These assumptions constrain the two otherwise-independent models, allowing AutoGen
to demand both generation from the prior (like VAEs) and high-fidelity reconstructions from
the latent (like autoencoders), all while specifying a single probability model, p(x = xn |z).

Indeed, the equality assumption allows us to write pSAE(x = xn |z) = p(x = xn |z) as
well as pVAE(x = xn) = p(x = xn). Thus, we can write Eq. 3 as:

LAutoGen =
∑

n

log p(x = xn) + log
∫

dz p(x = xn |z)pSAE(z|x = xn) (7)

Now applying Eq. 6 and combining the two logarithms, we find

LAutoGen =
∑

n

log
∫

dz p(x = xn |z)2 p(z) (8)

In other words, AutoGen can be interpreted as the tying of two separate generations from
the same model p(x = xn |z). The graphical representation of this interpretation is shown in
Fig. 1, where the dashed line corresponds to the tying (equality) of the two generations.

With the AutoGen assumptions, a simple lower bound for LAutoGen can be derived fol-
lowing from Eq. 8 and the standard variational lower bound arguments:

LAutoGen ≥
∑

n

2 〈log p(x = xn |z)〉q(z|xn) − DKL[q(z|xn)||p(z)] (9)

2.1 Multiple reconstructions

We see that the variational lower bound derived for AutoGen in Eq. 9 is the same as that
of the VAE (Kingma and Welling 2014; Rezende et al. 2014), but with a factor of 2 in the
reconstruction term. It is important to emphasize, however, that the AutoGen objective is not
a lower bound on the data log likelihood. Maximizing the lower bound in Eq. 9 represents a
criterion for training a generative model p(x |z) that evenly balances both good spontaneous
generation of the data p(x = xn) as well as high-fidelity reconstruction p(x ′ = xn |x = xn),
as it is a lower bound on the sum of those log likelihoods, Eq. 3.

Of course, AutoGen does not force the latent variable to encode information in a particular
way (e.g. semantic representation in language models), but it is a necessary condition that
the latent represents the data well in order to reconstruct it. We discuss the relation between
AutoGen and other efforts to influence the latent representation of VAEs in Sect. 4.

A natural generalisation of the AutoGen objective and assumptions is to maximize the
log likelihoods of m independent-but-tied reconstructions, instead of just 1. The arguments
above then lead to a lower bound with a factor of 1 + m in front of the generative term:

LAutoGen(m) ≥ (1 + m)
〈
log p(xn |z)

〉
q(z|xn) − DKL[q(z|xn)||p(z)] (10)

Larger m encourages better reconstructions at the expense of poorer generation. We discuss
the impact of the choice of m in Sect. 3.
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Fig. 2 (Left) −DKL[q(z|xn)||p(z)] term as a % of overall objective for the four models throughout training.
(Right) ELBO (log likelihood lower bound, Eq. 1) for the four models throughout training

3 Experiments

We train four separate language models, all with LSTM encoder and decoder networks as in
Bowman et al. (2016). Two of these models are VAEs—one such variant uses KL annealing,
and the other does not. We then train our baseline AutoGen model, which uses the objective
in Eq. 9, and train an AutoGen variant using the objective in Eq. 10 with m = 2.

All of the models were trained using the BookCorpus dataset (Zhu et al. 2015), which
contains sentences from a collection of 11,038 books. We restrict our data to contain only
sentences with length between 5 and 30 words, and restrict our vocabulary to the most
common 20,000 words. We use 90% of the data for training and 10% for testing. After
preprocessing, this equates to 58.8 million training sentences and 6.5 million test sentences.
All models in this section are trained using word drop as in Bowman et al. (2016).

Neither AutoGen models are trained using KL annealing. We consider KL annealing
to be an unprincipled approach, as it destroys the relevant lower bound during training. In
contrast, AutoGen provides an unfettered lower bound throughout training. Despite not using
KL annealing, we show that AutoGen improves latent-variable descriptiveness compared to
VAEs both with and without KL annealing for completeness.

3.1 Optimization results

We train all models for 1 million iterations using mini-batches of 200 sentences. We use 500
hidden states for the LSTM cells in our encoder and decoder networks, and dimension 50
for our latent variable z. The objective functions differ between the four models, and so it
is not meaningful to directly compare them. Instead, in Fig. 2 (left), we show the % of the
objective function that is accounted for by the KL term. Despite the fact that AutoGen has a
larger pre-factor in front of the 〈log p(x |z)〉q(z|x) term, the KL term becomes more and more
significant with respect to the overall objective function for AutoGen withm = 1 andm = 2,
as compared to the VAE. This suggests that the latent in AutoGen is putting less emphasis
on matching the prior p(z), emphasizing instead the representation of the data.

To understand the impact of AutoGen on the log likelihood of the training data (which is
the generation term in the AutoGen objective, Eq. 3), we compare the VAE ELBO in Eq. 1
of the four models during training. Since the ELBO is the objective function for the VAE,
we expect it to be a relatively tight lower bound on the log likelihood. However, this only
applies to the VAE. Indeed, if the VAE ELBO calculated with the AutoGen model is similar
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Table 1 Reconstructed sentences from the VAE and AutoGen

Input sentence VAE reconstruction VAE reconstruction
(annealing)

AutoGen reconstruction
(m = 1)

“More or less?” “Oh yeah” “What about you?” “More or less?”

Why would you need
to talk when they
can do it for you?

How could n’t i? Why do you want to know
if i can find out of here?

Why would you need to know
if you can do it for you?

She had no idea how
beautiful she truly
was

She hadn’t She had no idea what she
was talking about

She had no idea how
beautiful she was to

“I guess some people
never learn”

“I love you” “You know what you ’re
thinking”

“I guess our parents never
exist

Sentences are not “cherry picked”: these are the first four sentences reconstructed from a grammatically correct
input sentence, between 4 and 20 words in length (for aesthetics), and with none of the sentences containing
an unknown token (for readability)

to that of the VAE, we can conclude that the AutoGen model is approximately concurrently
maximizing the log likelihood as well as its reconstruction-specific objective.

In Fig. 2 (right) we show the ELBO for all four models. We see that, though the baseline
AutoGen (m = 1) ELBO is below that of the VAE, it tracks the VAE ELBO well and is non-
decreasing. On the other hand, for themore aggressive AutoGenwithm = 2, the ELBO starts
decreasing early on in training and continues to do so as its objective function is maximized.
Thus, for the baseline AutoGen with objective function corresponding to maximizing Eq. 3,
we expect decent reconstructions without significantly compromising generation from the
prior, whereas AutoGen (m = 2) may have a much more degraded ability to generate well.
In Sects. 3.2 and 3.3 we corroborate this expectation qualitatively by studying samples from
the models.

3.2 Sentence reconstruction

Indications that AutoGen should more powerfully encode information into its latent variable
were given theoretically in the construction of AutoGen in Sect. 2 as well as in Sect. 3.1 from
the optimization results. To see what this means for explicit samples, we perform a study of
the sentences reconstructed by the VAE as compared to those by AutoGen.

In Table 1, an input sentence x is taken from our test set, and a reconstruction is presented
that maximizes p(x |z), as determined using beam search. We sample z ∼ q(z|x) in this
process, meaning we find different reconstructions every time from the same input sentence,
despite the beam search procedure in the reconstruction.

AutoGen is qualitatively better at reconstructing sentences than the VAE. Indeed, even
when the input sentence is not reconstructed verbatim, AutoGen is able to generate a coherent
sentence with a similar meaning by using semantically similar words. For example in the
last sentence, by replacing “some people” with “our parents”, and “never learn” with “never
exist”. On the other hand, the VAE reconstructions regularly produce sentences that have
little relation to the input. Note that without annealing, the VAE regularly ignores the latent,
producing short, high-probability sentences reconstructed from the prior.

To make these results more quantitative, we ran three versions of a survey in which
respondents were asked to judge the best reconstructions from twomodels. In the first survey,
we received responses from 6 people who compared 120 pairs of reconstructions from the
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Table 2 Results from a blind survey comparing reconstruction quality

Model 1 versus model 2 % responses with model 1
as winner

VAE (annealing) versus VAE 66

AutoGen (m = 1) versus VAE (annealing) 88

AutoGen (m = 2) versus AutoGen (m = 1) 88

Respondents were told to “choose the best reconstruction”, and where ambiguous, could discard sentence pair

Table 3 Sentences generated from the prior, z ∼ N (0, I), for the VAE and AutoGen

VAE generation VAE generation (annealing) AutoGen generation (m = 1)

The only thing that mattered She just looked up They don’t show themselves in
mind, or something to hide

He gave her go She felt her lips together Her eyes widen, frowning

“Good morning,” i thought My hands began to fill the void of
what was happening to me

The lights lit up around me

She turned to herself At first i knew he would have to I just feel like fun

Sentences are not “cherry picked”: they are produced in the same way as those in Table 1

VAE and the VAE with annealing. The second survey received responses from 13 people
over 260 sentences and compared reconstructions from the VAE with annealing to AutoGen
(m = 1). The third compared AutoGen (m = 1) to AutoGen (m = 2) and received 23
responses over 575 sentences. None of the respondents in these surveys were authors of this
paper. The surveys were designed in this way to provide an easy binary question for the
respondents. They provide a suitable test of the models due to the transitive nature of the
comparisons.

Our survey results are shown in Table 2. We can clearly see that AutoGen with m = 2
outperforms AutoGen withm = 1, as expected. Similarly, AutoGen withm = 1 outperforms
the VAE with annealing, and the VAE with annealing outperforms the VAE. All results have
greater than 99% confidence.

3.3 Sentence generation

The objective function of AutoGen encourages the generation of higher-fidelity reconstruc-
tions from its approximate posterior. The fundamental trade-off is that it may be less capable
of generating sentences from its prior.

To investigate the qualitative impact of this trade-off, we now generate samples from the
prior z ∼ N (0, I) of the VAE and AutoGen. For a given latent z, we generate sentences x ′ as
in Sect. 3.2. Results are shown in Table 3, where we see that both models appear to generate
similarly coherent sentences; there appears to be no obvious qualitative difference between
the VAE and AutoGen.

To be more quantitative, we ran a survey of 23 people—none of which were the authors—
considering 392 sentences generated from the priors of all four of the models under
consideration. We applied the same sentence filters to these generated sentences as we did to
those generated in Table 3. We then asked the respondents whether or not a given sentence
“made sense”, maintaining the binary nature of the question, but allowing the respondent to
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Table 4 Results from a blind survey testing generation quality

Model % meaningful (L ≤ 10) % meaningful (L > 10)

VAE 75 N/A

VAE (annealing) 76 32

AutoGen (m = 1) 50 32

AutoGen (m = 2) 29 5

Respondents were asked “does this sentence make sense” for a randomized list of sentences evenly sampled
from the four models. Results are split into two sentence lengths L in order to mitigate the bias of the VAE
models to generate short sentences

interpret the meaning of a sentence “making sense”. To minimize systematic effects, each
respondent saw a maximum of 20 questions, evenly distributed between the four models. All
sentences in the surveys were randomly shuffled with the model information obfuscated.

The results of our survey are shown in Table 4. Since the VAE generates systematically
shorter sentences than the training data, which are inherently more likely to be meaningful,
we split our results into short and long sentences (with length ≤ 10 and > 10 tokens,
respectively).We conclude that theVAEwith annealing is better at generating short sentences
than AutoGen (m = 1). However, both models achieve equal results on generation quality for
longer sentences. We also see that AutoGen (m = 2) generates significantly worse sentences
than other models, as expected. All results that differ by more 1 percentage point in the table
are statistically significant with confidence greater than 99%.

3.4 Latent manifold structure

Finally, with high-fidelity reconstructions from the latent, one would expect to be able to
witness the smoothness of the latent space well. This seems to be the case, as can be seen in
Table 5, where we show the reconstructions of a linear interpolation between two encoded
sentences for VAE with annealing and for AutoGen (m = 1). The AutoGen interpolation
seems to be qualitatively smoother: while neighbouring sentences are more similar, there are
fewer instances of reconstructing the same sentences at subsequent interpolation steps.

The reconstructions from the VAE without annealing have little dependence on the latent,
and AutoGen (m = 2) struggles to generate from the prior. As a consequence, both of these
models show highly non-smooth interpolations with little similarity between subsequent
sentences. The results for these models have therefore been omitted.

We have provided only a single sample interpolation, and though it was not cherry picked,
we do not attempt to make a statistically significant statement on the smoothness of the
latent space. Given the theoretical construction of AutoGen, and the robust results shown in
previous sections, we consider smoothness to be expected. The sample shown is consistent
with our expectations, though we do not consider it a definite empirical result.

4 Discussion

We have seen that AutoGen successfully improves the fidelity of reconstructions from the
latent variable as compared to VAEs. It does so in a principled way, by explicitly modelling
both generation of the data and high-fidelity reconstruction. This is especially useful when
the generative model is powerful, such as the autoregressive LSTM in Bowman et al. (2016).

123



Machine Learning (2019) 108:1601–1611 1609

Table 5 Latent variable interpolation

VAE (annealing) AutoGen (m = 1)

“I’ll do anything, blake” “I’ll do anything, blake”

“I’ll be right back then” “I’ll do it, though”

“I’ll tell me like that” “I’ll say it, sir”

I don’t know what to say “I’ve done it once”

I don’t know what to say I don’t think that was it

I don’t think about that way I wish so, though

I’ll be right now I bet it’s okay

I was so much I know how dad

I looked at him I laughed at Jack

I looked at him I looked at Sam

I looked at Adam I looked at Adam

Two sentences (first and last sentences shown) are randomly selected from the test dataset and encoded into
z1 and z2. Sentences are then generated along 10 evenly spaced steps from z1 to z2. This interpolation was
not “cherry picked”: it was our first generated interpolation using the same filters as in previous tables

Other work toward enabling latent variables in VAE models to learn meaningful repre-
sentations has focused on managing the structure of the representation, such as ensuring
disentanglement. A detailed discussion of disentanglement in the context of VAEs is given
byHiggins et al. (2017) and its references. An example of disentangling representations in the
context of image generation is Gulrajani et al. (2017), where the authors restrict the decoding
model to describe only local information in the image (e.g., texture, shading), allowing their
latents to describe global information (e.g., object geometry, overall color).

Demanding high-fidelity reconstructions from latent variables in a model (e.g., AutoGen)
is in tension with demanding specific information to be stored in the latent variables (e.g.,
disentanglement). This can be seen very clearly by comparing our work to Higgins et al.
(2017), where the authors introduce an ad-hoc factor of β in front of the KL-divergence term
of the VAE objective function, the ELBO. They find that β > 1 is required to improve the
disentanglement of their latent representations.

Interestingly, β > 1 corresponds analytically to −1 < m < 0 in Eq. 10, since the overall
normalization of the objective function does not impact the location of its extrema. That is,
Eq. 10 is equivalent to the β-VAE objective function with β = (1 + m)−1.

Since m in AutoGen represents the number of times a high-fidelity reconstruction is
demanded (in addition to a single generation from the prior),β-VAEwithβ > 1 is analytically
equivalent to demanding a negative number of high-fidelity reconstructions. As an analytic
function of m, with larger m corresponding to higher-fidelity reconstructions, negative m
would correspond to a deprecation of the reconstruction quality. This is indeed what the
authors in Higgins et al. (2017) find and discuss. They view β-VAE as a technique to trade
off more disentangled representations at the cost of lower-fidelity reconstructions, in contrast
to our view of AutoGen as a technique to trade off higher-fidelity reconstructions at the cost
of slightly inferior generation from the prior.

In connecting toβ-VAE,we have consideredAutoGenwithm as a real number. Practically,
m could take positive real values, and can be seen as a hyperparameter that requires task-
specific tuning. From our results, we expectm ≈ 1 to be a useful ballpark value, with smaller
m improving generation from the prior, and larger m improving reconstruction fidelity. The
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advantage of tuning m as described is that it has a principled interpretation at integer values;
namely that of demanding m exact reconstructions from the latent, as derived in Sect. 2.

In this light, KL annealing amounts to startingwithm = ∞ at the beginning, and smoothly
reducingm down to 0 during training. Thus, it is equivalent to optimizing the AutoGen lower
bound given in Eq. 10 with varying m during training. However, AutoGen should never
require KL annealing.

Scaling of the ELBO is common inmultimodal generation, where the reconstruction terms
are typically of different orders ofmagnitude (Vedantam et al. 2018;Wu andGoodman 2018).
AutoGen can be adapted to provide a bound on ameaningful objective function inmultimodal
generation with well-scaled terms, by requiring a larger number of reconstructions for one
data modality than the other. Autogen thus has broader applications in generative modelling,
which the authors leave to future work.

5 Conclusions

In this paper, we introduced AutoGen: a novel modelling approach to improve the descrip-
tiveness of latent variables in generative models, by combining the log likelihood of m
high-fidelity reconstructions via a stochastic autoencoder, with the log likelihood of a VAE.
This approach is theoretically principled in that it retains a bound on a meaningful objective,
and computationally amounts to a simple factor of (1 + m) in front of the reconstruction
term in the standard ELBO. We find that the most natural version of AutoGen (with m = 1)
provides significantly better reconstructions than the VAE approach to language modelling,
and only minimally deprecates generation from the prior.
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